Large Equiangular Sets of Lines in Euclidean Space
A construction is given of ${{2}\over {9}} (d+1)^2$ equiangular lines in Euclidean $d$-space, when $d = 3 \cdot 2^{2t-1}-1$ with $t$ any positive integer. This compares with the well known "absolute" upper bound of ${{1}\over {2}} d(d+1)$ lines in any equiangular set; it is the first known...
Gespeichert in:
Veröffentlicht in: | The Electronic journal of combinatorics 2000-11, Vol.7 (1) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A construction is given of ${{2}\over {9}} (d+1)^2$ equiangular lines in Euclidean $d$-space, when $d = 3 \cdot 2^{2t-1}-1$ with $t$ any positive integer. This compares with the well known "absolute" upper bound of ${{1}\over {2}} d(d+1)$ lines in any equiangular set; it is the first known constructive lower bound of order $d^2$ . |
---|---|
ISSN: | 1077-8926 1077-8926 |
DOI: | 10.37236/1533 |