The Maximum of the Maximum Rectilinear Crossing Numbers of $d$-Regular Graphs of Order $n
We extend known results regarding the maximum rectilinear crossing number of the cycle graph ($C_n$) and the complete graph ($K_n$) to the class of general $d$-regular graphs $R_{n,d}$. We present the generalized star drawings of the $d$-regular graphs $S_{n,d}$ of order $n$ where $n+d\equiv 1 \pmod...
Gespeichert in:
Veröffentlicht in: | The Electronic journal of combinatorics 2009-04, Vol.16 (1) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We extend known results regarding the maximum rectilinear crossing number of the cycle graph ($C_n$) and the complete graph ($K_n$) to the class of general $d$-regular graphs $R_{n,d}$. We present the generalized star drawings of the $d$-regular graphs $S_{n,d}$ of order $n$ where $n+d\equiv 1 \pmod 2 $ and prove that they maximize the maximum rectilinear crossing numbers. A star-like drawing of $S_{n,d}$ for $n \equiv d \equiv 0 \pmod 2$ is introduced and we conjecture that this drawing maximizes the maximum rectilinear crossing numbers, too. We offer a simpler proof of two results initially proved by Furry and Kleitman as partial results in the direction of this conjecture. |
---|---|
ISSN: | 1077-8926 1077-8926 |
DOI: | 10.37236/143 |