The Maximum of the Maximum Rectilinear Crossing Numbers of $d$-Regular Graphs of Order $n

We extend known results regarding the maximum rectilinear crossing number of the cycle graph ($C_n$) and the complete graph ($K_n$) to the class of general $d$-regular graphs $R_{n,d}$. We present the generalized star drawings of the $d$-regular graphs $S_{n,d}$ of order $n$ where $n+d\equiv 1 \pmod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2009-04, Vol.16 (1)
Hauptverfasser: Alpert, Matthew, Feder, Elie, Harborth, Heiko
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We extend known results regarding the maximum rectilinear crossing number of the cycle graph ($C_n$) and the complete graph ($K_n$) to the class of general $d$-regular graphs $R_{n,d}$. We present the generalized star drawings of the $d$-regular graphs $S_{n,d}$ of order $n$ where $n+d\equiv 1 \pmod 2 $ and prove that they maximize the maximum rectilinear crossing numbers. A star-like drawing of $S_{n,d}$ for $n \equiv d \equiv 0 \pmod 2$ is introduced and we conjecture that this drawing maximizes the maximum rectilinear crossing numbers, too. We offer a simpler proof of two results initially proved by Furry and Kleitman as partial results in the direction of this conjecture.
ISSN:1077-8926
1077-8926
DOI:10.37236/143