Improved Lower Bound for Frankl’s Union-Closed Sets Conjecture

We verify an explicit inequality conjectured in [Gilmer, 2022, arXiv:2211.09055], thus proving that for any nonempty union-closed family $\mathcal{F} \subseteq 2^{[n]}$, some $i\in [n]$ is contained in at least a $\frac{3-\sqrt{5}}{2} \approx 0.38$ fraction of the sets in $\mathcal{F} \$. One case,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2024-09, Vol.31 (3)
Hauptverfasser: Alweiss, Ryan, Huang, Brice, Sellke, Mark
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title The Electronic journal of combinatorics
container_volume 31
creator Alweiss, Ryan
Huang, Brice
Sellke, Mark
description We verify an explicit inequality conjectured in [Gilmer, 2022, arXiv:2211.09055], thus proving that for any nonempty union-closed family $\mathcal{F} \subseteq 2^{[n]}$, some $i\in [n]$ is contained in at least a $\frac{3-\sqrt{5}}{2} \approx 0.38$ fraction of the sets in $\mathcal{F} \$. One case, an explicit one-variable inequality, is checked by computer calculation.
doi_str_mv 10.37236/12232
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_37236_12232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_37236_12232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-50f705657852e72b8bd2a91b35a905b13f765db1a9d9c5a18c114138dea0362c3</originalsourceid><addsrcrecordid>eNpNj8tKAzEYRoMoWKs-Q1buovmT5rZTB6uFARfa9ZArtE4nJZkq7nwNX88nUaoLV-dbHD44CJ0DveSKcXkFjHF2gCZAlSLaMHn4bx-jk1rXlAIzRkzQ9WKzLfk1Btzmt1jwbd4NAadc8LzY4aX_-viseDms8kCaPtcf7ymOFTd5WEc_7ko8RUfJ9jWe_XGKlvO75-aBtI_3i-amJR5meiSCJkWFFEoLFhVz2gVmDTgurKHCAU9KiuDAmmC8sKA9wAy4DtFSLpnnU3Tx--tLrrXE1G3LamPLewe023d3-27-DayaSXM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improved Lower Bound for Frankl’s Union-Closed Sets Conjecture</title><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Alweiss, Ryan ; Huang, Brice ; Sellke, Mark</creator><creatorcontrib>Alweiss, Ryan ; Huang, Brice ; Sellke, Mark</creatorcontrib><description>We verify an explicit inequality conjectured in [Gilmer, 2022, arXiv:2211.09055], thus proving that for any nonempty union-closed family $\mathcal{F} \subseteq 2^{[n]}$, some $i\in [n]$ is contained in at least a $\frac{3-\sqrt{5}}{2} \approx 0.38$ fraction of the sets in $\mathcal{F} \$. One case, an explicit one-variable inequality, is checked by computer calculation.</description><identifier>ISSN: 1077-8926</identifier><identifier>EISSN: 1077-8926</identifier><identifier>DOI: 10.37236/12232</identifier><language>eng</language><ispartof>The Electronic journal of combinatorics, 2024-09, Vol.31 (3)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,861,27905,27906</link.rule.ids></links><search><creatorcontrib>Alweiss, Ryan</creatorcontrib><creatorcontrib>Huang, Brice</creatorcontrib><creatorcontrib>Sellke, Mark</creatorcontrib><title>Improved Lower Bound for Frankl’s Union-Closed Sets Conjecture</title><title>The Electronic journal of combinatorics</title><description>We verify an explicit inequality conjectured in [Gilmer, 2022, arXiv:2211.09055], thus proving that for any nonempty union-closed family $\mathcal{F} \subseteq 2^{[n]}$, some $i\in [n]$ is contained in at least a $\frac{3-\sqrt{5}}{2} \approx 0.38$ fraction of the sets in $\mathcal{F} \$. One case, an explicit one-variable inequality, is checked by computer calculation.</description><issn>1077-8926</issn><issn>1077-8926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNj8tKAzEYRoMoWKs-Q1buovmT5rZTB6uFARfa9ZArtE4nJZkq7nwNX88nUaoLV-dbHD44CJ0DveSKcXkFjHF2gCZAlSLaMHn4bx-jk1rXlAIzRkzQ9WKzLfk1Btzmt1jwbd4NAadc8LzY4aX_-viseDms8kCaPtcf7ymOFTd5WEc_7ko8RUfJ9jWe_XGKlvO75-aBtI_3i-amJR5meiSCJkWFFEoLFhVz2gVmDTgurKHCAU9KiuDAmmC8sKA9wAy4DtFSLpnnU3Tx--tLrrXE1G3LamPLewe023d3-27-DayaSXM</recordid><startdate>20240920</startdate><enddate>20240920</enddate><creator>Alweiss, Ryan</creator><creator>Huang, Brice</creator><creator>Sellke, Mark</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240920</creationdate><title>Improved Lower Bound for Frankl’s Union-Closed Sets Conjecture</title><author>Alweiss, Ryan ; Huang, Brice ; Sellke, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-50f705657852e72b8bd2a91b35a905b13f765db1a9d9c5a18c114138dea0362c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alweiss, Ryan</creatorcontrib><creatorcontrib>Huang, Brice</creatorcontrib><creatorcontrib>Sellke, Mark</creatorcontrib><collection>CrossRef</collection><jtitle>The Electronic journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alweiss, Ryan</au><au>Huang, Brice</au><au>Sellke, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Lower Bound for Frankl’s Union-Closed Sets Conjecture</atitle><jtitle>The Electronic journal of combinatorics</jtitle><date>2024-09-20</date><risdate>2024</risdate><volume>31</volume><issue>3</issue><issn>1077-8926</issn><eissn>1077-8926</eissn><abstract>We verify an explicit inequality conjectured in [Gilmer, 2022, arXiv:2211.09055], thus proving that for any nonempty union-closed family $\mathcal{F} \subseteq 2^{[n]}$, some $i\in [n]$ is contained in at least a $\frac{3-\sqrt{5}}{2} \approx 0.38$ fraction of the sets in $\mathcal{F} \$. One case, an explicit one-variable inequality, is checked by computer calculation.</abstract><doi>10.37236/12232</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1077-8926
ispartof The Electronic journal of combinatorics, 2024-09, Vol.31 (3)
issn 1077-8926
1077-8926
language eng
recordid cdi_crossref_primary_10_37236_12232
source DOAJ Directory of Open Access Journals; EZB Electronic Journals Library
title Improved Lower Bound for Frankl’s Union-Closed Sets Conjecture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T18%3A23%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Lower%20Bound%20for%20Frankl%E2%80%99s%20Union-Closed%20Sets%20Conjecture&rft.jtitle=The%20Electronic%20journal%20of%20combinatorics&rft.au=Alweiss,%20Ryan&rft.date=2024-09-20&rft.volume=31&rft.issue=3&rft.issn=1077-8926&rft.eissn=1077-8926&rft_id=info:doi/10.37236/12232&rft_dat=%3Ccrossref%3E10_37236_12232%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true