Improved Lower Bound for Frankl’s Union-Closed Sets Conjecture
We verify an explicit inequality conjectured in [Gilmer, 2022, arXiv:2211.09055], thus proving that for any nonempty union-closed family $\mathcal{F} \subseteq 2^{[n]}$, some $i\in [n]$ is contained in at least a $\frac{3-\sqrt{5}}{2} \approx 0.38$ fraction of the sets in $\mathcal{F} \$. One case,...
Gespeichert in:
Veröffentlicht in: | The Electronic journal of combinatorics 2024-09, Vol.31 (3) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We verify an explicit inequality conjectured in [Gilmer, 2022, arXiv:2211.09055], thus proving that for any nonempty union-closed family $\mathcal{F} \subseteq 2^{[n]}$, some $i\in [n]$ is contained in at least a $\frac{3-\sqrt{5}}{2} \approx 0.38$ fraction of the sets in $\mathcal{F} \$. One case, an explicit one-variable inequality, is checked by computer calculation. |
---|---|
ISSN: | 1077-8926 1077-8926 |
DOI: | 10.37236/12232 |