Improved Lower Bound for Frankl’s Union-Closed Sets Conjecture

We verify an explicit inequality conjectured in [Gilmer, 2022, arXiv:2211.09055], thus proving that for any nonempty union-closed family $\mathcal{F} \subseteq 2^{[n]}$, some $i\in [n]$ is contained in at least a $\frac{3-\sqrt{5}}{2} \approx 0.38$ fraction of the sets in $\mathcal{F} \$. One case,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2024-09, Vol.31 (3)
Hauptverfasser: Alweiss, Ryan, Huang, Brice, Sellke, Mark
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We verify an explicit inequality conjectured in [Gilmer, 2022, arXiv:2211.09055], thus proving that for any nonempty union-closed family $\mathcal{F} \subseteq 2^{[n]}$, some $i\in [n]$ is contained in at least a $\frac{3-\sqrt{5}}{2} \approx 0.38$ fraction of the sets in $\mathcal{F} \$. One case, an explicit one-variable inequality, is checked by computer calculation.
ISSN:1077-8926
1077-8926
DOI:10.37236/12232