A Cantor-Bendixson Rank for Siblings of Trees

Similar to topological spaces, we introduce the Cantor-Bendixson rank of a tree $T$ by repeatedly removing the leaves and the isolated vertices of $T$ using transfinite recursion. Then, we give a representation of a tree $T$ as a leafless tree $T^\infty$ with some leafy trees attached to $T^\infty$....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2023-05, Vol.30 (2)
1. Verfasser: Abdi, Davoud
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Similar to topological spaces, we introduce the Cantor-Bendixson rank of a tree $T$ by repeatedly removing the leaves and the isolated vertices of $T$ using transfinite recursion. Then, we give a representation of a tree $T$ as a leafless tree $T^\infty$ with some leafy trees attached to $T^\infty$. With this representation at our disposal, we count the siblings of a tree and obtain partial results towards a conjecture of Bonato and Tardif.
ISSN:1077-8926
1077-8926
DOI:10.37236/11537