A Result on Large Induced Subgraphs with Prescribed Residues in Bipartite Graphs

It was proved by Scott that for every $k\ge 2$, there exists a constant $c(k)>0$ such that for every bipartite $n$-vertex graph $G$ without isolated vertices, there exists an induced subgraph $H$ of order at least $c(k)n$ such that $\operatorname{deg}_H(v) \equiv 1\pmod{k}$ for each $v \in H$. Sc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2023-01, Vol.30 (1)
1. Verfasser: Hunter, Zachary
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It was proved by Scott that for every $k\ge 2$, there exists a constant $c(k)>0$ such that for every bipartite $n$-vertex graph $G$ without isolated vertices, there exists an induced subgraph $H$ of order at least $c(k)n$ such that $\operatorname{deg}_H(v) \equiv 1\pmod{k}$ for each $v \in H$. Scott conjectured that $c(k) = \Omega(1/k)$, which would be tight up to the multiplicative constant. We confirm this conjecture.
ISSN:1077-8926
1077-8926
DOI:10.37236/11454