On Sum Sets and Convex Functions

In this paper we prove new bounds for sums of convex or concave functions. Specifically, we prove that for all $A,B \subseteq \mathbb R$ finite sets, and for all $f,g$ convex or concave functions, we have $$|A + B|^{38}|f(A) + g(B)|^{38} \gtrsim |A|^{49}|B|^{49}.$$ This result can be used to obtain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2022-05, Vol.29 (2)
Hauptverfasser: Stevens, Sophie, Warren, Audie
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title The Electronic journal of combinatorics
container_volume 29
creator Stevens, Sophie
Warren, Audie
description In this paper we prove new bounds for sums of convex or concave functions. Specifically, we prove that for all $A,B \subseteq \mathbb R$ finite sets, and for all $f,g$ convex or concave functions, we have $$|A + B|^{38}|f(A) + g(B)|^{38} \gtrsim |A|^{49}|B|^{49}.$$ This result can be used to obtain bounds on a number of two-variable expanders of interest, as well as to the asymmetric sum-product problem. We also adjust our technique to prove the three-variable expansion result $$|AB+A|\gtrsim |A|^{\frac{3}{2} +\frac{3}{170}}\,.$$Our methods follow a series of recent developments in the sum-product literature, presenting a unified picture. Of particular interest is an adaptation of a regularisation technique of Xue, originating in a paper of Rudnev, Shakan, and Shkredov, that enables us to find positive proportion subsets with certain desirable properties.
doi_str_mv 10.37236/10852
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_37236_10852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_37236_10852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c682-21c5314d40f916d99b45b619f318168825d9d4ca223dec9daf262fb23d1461233</originalsourceid><addsrcrecordid>eNpNj0tLw0AURgepYI36G2blLjr3ziNzlxKsFQpdtPswmQdEzEQyrei_V6qLrs53Nh8cxu5APMgGpXkEYTVesCWIpqktoVmc7St2XcqbEIBEesn4NvPdceS7eCjc5cDbKX_GL746Zn8Yplxu2GVy7yXe_rNi-9Xzvl3Xm-3La_u0qb2xWCN4LUEFJRKBCUS90r0BShIsGGtRBwrKO0QZoqfgEhpM_a-BMoBSVuz-79bPUylzTN3HPIxu_u5AdKes7pQlfwBblDvb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Sum Sets and Convex Functions</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Stevens, Sophie ; Warren, Audie</creator><creatorcontrib>Stevens, Sophie ; Warren, Audie</creatorcontrib><description>In this paper we prove new bounds for sums of convex or concave functions. Specifically, we prove that for all $A,B \subseteq \mathbb R$ finite sets, and for all $f,g$ convex or concave functions, we have $$|A + B|^{38}|f(A) + g(B)|^{38} \gtrsim |A|^{49}|B|^{49}.$$ This result can be used to obtain bounds on a number of two-variable expanders of interest, as well as to the asymmetric sum-product problem. We also adjust our technique to prove the three-variable expansion result $$|AB+A|\gtrsim |A|^{\frac{3}{2} +\frac{3}{170}}\,.$$Our methods follow a series of recent developments in the sum-product literature, presenting a unified picture. Of particular interest is an adaptation of a regularisation technique of Xue, originating in a paper of Rudnev, Shakan, and Shkredov, that enables us to find positive proportion subsets with certain desirable properties.</description><identifier>ISSN: 1077-8926</identifier><identifier>EISSN: 1077-8926</identifier><identifier>DOI: 10.37236/10852</identifier><language>eng</language><ispartof>The Electronic journal of combinatorics, 2022-05, Vol.29 (2)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c682-21c5314d40f916d99b45b619f318168825d9d4ca223dec9daf262fb23d1461233</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Stevens, Sophie</creatorcontrib><creatorcontrib>Warren, Audie</creatorcontrib><title>On Sum Sets and Convex Functions</title><title>The Electronic journal of combinatorics</title><description>In this paper we prove new bounds for sums of convex or concave functions. Specifically, we prove that for all $A,B \subseteq \mathbb R$ finite sets, and for all $f,g$ convex or concave functions, we have $$|A + B|^{38}|f(A) + g(B)|^{38} \gtrsim |A|^{49}|B|^{49}.$$ This result can be used to obtain bounds on a number of two-variable expanders of interest, as well as to the asymmetric sum-product problem. We also adjust our technique to prove the three-variable expansion result $$|AB+A|\gtrsim |A|^{\frac{3}{2} +\frac{3}{170}}\,.$$Our methods follow a series of recent developments in the sum-product literature, presenting a unified picture. Of particular interest is an adaptation of a regularisation technique of Xue, originating in a paper of Rudnev, Shakan, and Shkredov, that enables us to find positive proportion subsets with certain desirable properties.</description><issn>1077-8926</issn><issn>1077-8926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNj0tLw0AURgepYI36G2blLjr3ziNzlxKsFQpdtPswmQdEzEQyrei_V6qLrs53Nh8cxu5APMgGpXkEYTVesCWIpqktoVmc7St2XcqbEIBEesn4NvPdceS7eCjc5cDbKX_GL746Zn8Yplxu2GVy7yXe_rNi-9Xzvl3Xm-3La_u0qb2xWCN4LUEFJRKBCUS90r0BShIsGGtRBwrKO0QZoqfgEhpM_a-BMoBSVuz-79bPUylzTN3HPIxu_u5AdKes7pQlfwBblDvb</recordid><startdate>20220506</startdate><enddate>20220506</enddate><creator>Stevens, Sophie</creator><creator>Warren, Audie</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220506</creationdate><title>On Sum Sets and Convex Functions</title><author>Stevens, Sophie ; Warren, Audie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c682-21c5314d40f916d99b45b619f318168825d9d4ca223dec9daf262fb23d1461233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stevens, Sophie</creatorcontrib><creatorcontrib>Warren, Audie</creatorcontrib><collection>CrossRef</collection><jtitle>The Electronic journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stevens, Sophie</au><au>Warren, Audie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Sum Sets and Convex Functions</atitle><jtitle>The Electronic journal of combinatorics</jtitle><date>2022-05-06</date><risdate>2022</risdate><volume>29</volume><issue>2</issue><issn>1077-8926</issn><eissn>1077-8926</eissn><abstract>In this paper we prove new bounds for sums of convex or concave functions. Specifically, we prove that for all $A,B \subseteq \mathbb R$ finite sets, and for all $f,g$ convex or concave functions, we have $$|A + B|^{38}|f(A) + g(B)|^{38} \gtrsim |A|^{49}|B|^{49}.$$ This result can be used to obtain bounds on a number of two-variable expanders of interest, as well as to the asymmetric sum-product problem. We also adjust our technique to prove the three-variable expansion result $$|AB+A|\gtrsim |A|^{\frac{3}{2} +\frac{3}{170}}\,.$$Our methods follow a series of recent developments in the sum-product literature, presenting a unified picture. Of particular interest is an adaptation of a regularisation technique of Xue, originating in a paper of Rudnev, Shakan, and Shkredov, that enables us to find positive proportion subsets with certain desirable properties.</abstract><doi>10.37236/10852</doi></addata></record>
fulltext fulltext
identifier ISSN: 1077-8926
ispartof The Electronic journal of combinatorics, 2022-05, Vol.29 (2)
issn 1077-8926
1077-8926
language eng
recordid cdi_crossref_primary_10_37236_10852
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title On Sum Sets and Convex Functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A07%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Sum%20Sets%20and%20Convex%20Functions&rft.jtitle=The%20Electronic%20journal%20of%20combinatorics&rft.au=Stevens,%20Sophie&rft.date=2022-05-06&rft.volume=29&rft.issue=2&rft.issn=1077-8926&rft.eissn=1077-8926&rft_id=info:doi/10.37236/10852&rft_dat=%3Ccrossref%3E10_37236_10852%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true