On Sum Sets and Convex Functions
In this paper we prove new bounds for sums of convex or concave functions. Specifically, we prove that for all $A,B \subseteq \mathbb R$ finite sets, and for all $f,g$ convex or concave functions, we have $$|A + B|^{38}|f(A) + g(B)|^{38} \gtrsim |A|^{49}|B|^{49}.$$ This result can be used to obtain...
Gespeichert in:
Veröffentlicht in: | The Electronic journal of combinatorics 2022-05, Vol.29 (2) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we prove new bounds for sums of convex or concave functions. Specifically, we prove that for all $A,B \subseteq \mathbb R$ finite sets, and for all $f,g$ convex or concave functions, we have $$|A + B|^{38}|f(A) + g(B)|^{38} \gtrsim |A|^{49}|B|^{49}.$$
This result can be used to obtain bounds on a number of two-variable expanders of interest, as well as to the asymmetric sum-product problem. We also adjust our technique to prove the three-variable expansion result $$|AB+A|\gtrsim |A|^{\frac{3}{2} +\frac{3}{170}}\,.$$Our methods follow a series of recent developments in the sum-product literature, presenting a unified picture. Of particular interest is an adaptation of a regularisation technique of Xue, originating in a paper of Rudnev, Shakan, and Shkredov, that enables us to find positive proportion subsets with certain desirable properties. |
---|---|
ISSN: | 1077-8926 1077-8926 |
DOI: | 10.37236/10852 |