An Ore-Type Condition for Hamiltonicity in Tough Graphs
Let $G$ be a $t$-tough graph on $n\geqslant 3$ vertices for some $t>0$. It was shown by Bauer et al. in 1995 that if the minimum degree of $G$ is greater than $\frac{n}{t+1}-1$, then $G$ is hamiltonian. In terms of Ore-type hamiltonicity conditions, the problem was only studied when $t$ is betwee...
Gespeichert in:
Veröffentlicht in: | The Electronic journal of combinatorics 2022-01, Vol.29 (1) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $G$ be a $t$-tough graph on $n\geqslant 3$ vertices for some $t>0$. It was shown by Bauer et al. in 1995 that if the minimum degree of $G$ is greater than $\frac{n}{t+1}-1$, then $G$ is hamiltonian. In terms of Ore-type hamiltonicity conditions, the problem was only studied when $t$ is between 1 and 2. In this paper, we show that if the degree sum of any two nonadjacent vertices of $G$ is greater than $\frac{2n}{t+1}+t-2$, then $G$ is hamiltonian. |
---|---|
ISSN: | 1077-8926 1077-8926 |
DOI: | 10.37236/10389 |