Typical Values of Extremal-Weight Combinatorial Structures with Independent Symmetric Weights

Suppose that the edges of a complete graph are assigned weights independently at random and we ask for the weight of the minimal-weight spanning tree, or perfect matching, or Hamiltonian cycle. For these and several other common optimisation problems, we establish asymptotically tight bounds when th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2023-01, Vol.30 (1)
Hauptverfasser: Cheng, Yun, Liu, Yixue, Tkocz, Tomasz, Xu, Albert
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Suppose that the edges of a complete graph are assigned weights independently at random and we ask for the weight of the minimal-weight spanning tree, or perfect matching, or Hamiltonian cycle. For these and several other common optimisation problems, we establish asymptotically tight bounds when the weights are independent copies of a symmetric random variable (satisfying a mild condition on tail probabilities), in particular when the weights are Gaussian.
ISSN:1077-8926
1077-8926
DOI:10.37236/10237