Halpern subgradient extragradient algorithm for solving quasimonotone variational inequality problems
In this paper, we study the numerical solution of the variational inequalities involving quasimonotone operators in infinite-dimensional Hilbert spaces. We prove that the iterative sequence generated by the proposed algorithm for the solution of quasimonotone variational inequalities converges stron...
Gespeichert in:
Veröffentlicht in: | Carpathian Journal of Mathematics 2022-01, Vol.38 (1), p.249-262 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the numerical solution of the variational inequalities involving quasimonotone operators in infinite-dimensional Hilbert spaces. We prove that the iterative sequence generated by the proposed algorithm for the solution of quasimonotone variational inequalities converges strongly to a solution. The main advantage of the proposed iterative schemes is that it uses a monotone and non-monotone step size rule based on operator knowledge rather than its Lipschitz constant or some other line search method. |
---|---|
ISSN: | 1584-2851 1843-4401 |
DOI: | 10.37193/CJM.2022.01.20 |