Halpern subgradient extragradient algorithm for solving quasimonotone variational inequality problems

In this paper, we study the numerical solution of the variational inequalities involving quasimonotone operators in infinite-dimensional Hilbert spaces. We prove that the iterative sequence generated by the proposed algorithm for the solution of quasimonotone variational inequalities converges stron...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carpathian Journal of Mathematics 2022-01, Vol.38 (1), p.249-262
Hauptverfasser: Yotkaew, Pongsakorn, Rehman, Habib ur, Panyanak, Bancha, Pakkaranang, Nuttapol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the numerical solution of the variational inequalities involving quasimonotone operators in infinite-dimensional Hilbert spaces. We prove that the iterative sequence generated by the proposed algorithm for the solution of quasimonotone variational inequalities converges strongly to a solution. The main advantage of the proposed iterative schemes is that it uses a monotone and non-monotone step size rule based on operator knowledge rather than its Lipschitz constant or some other line search method.
ISSN:1584-2851
1843-4401
DOI:10.37193/CJM.2022.01.20