Well-posedness of a nonlinear second-order anisotropic reaction-diffusion problem with nonlinear and inhomogeneous dynamic boundary conditions

The paper is concerned with a qualitative analysis for a nonlinear second-order boundary value problem, endowed with nonlinear and inhomogeneous dynamic boundary conditions, extending the types of bounday conditions already studied. Under certain assumptions on the input data: f₁ (t, x), w(t, x) and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carpathian Journal of Mathematics 2022-01, Vol.38 (1), p.95-116
Hauptverfasser: Choban, Mitrofan M., Moroşanu, Costică N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper is concerned with a qualitative analysis for a nonlinear second-order boundary value problem, endowed with nonlinear and inhomogeneous dynamic boundary conditions, extending the types of bounday conditions already studied. Under certain assumptions on the input data: f₁ (t, x), w(t, x) and u₀(x), we prove the well-posedness (the existence, a priori estimates, regularity and uniqueness) of a classical solution in the Sobolev space W p 1 , 2 ( Q ) . This extends previous works concerned with nonlinear dynamic boundary conditions, allowing to the present mathematical model to better approximate the real physical phenomena (the anisotropy effects, phase change in Ω and at the boundary ∂Ω, etc.).
ISSN:1584-2851
1843-4401
DOI:10.37193/CJM.2022.01.08