A new complex generalized Bernstein-Schurer operator
In this paper, we consider the complex form of a new generalization of Bernstein-Schurer operators. We obtain some quantitative upper estimates for the approximation of these operators attached to analytic functions. Moreover, we prove that these operators preserve some properties of the original fu...
Gespeichert in:
Veröffentlicht in: | Carpathian Journal of Mathematics 2021-01, Vol.37 (1), p.81-89 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider the complex form of a new generalization of Bernstein-Schurer operators. We obtain some quantitative upper estimates for the approximation of these operators attached to analytic functions. Moreover, we prove that these operators preserve some properties of the original function such as univalence, starlikeness, convexity and spirallikeness. |
---|---|
ISSN: | 1584-2851 1843-4401 |
DOI: | 10.37193/CJM.2021.01.08 |