An inertial extragradient method for solving bilevel equilibrium problems

In this paper, we propose an algorithm with two inertial term extrapolation steps for solving bilevel equilibrium problem in a real Hilbert space. The inertial term extrapolation step is introduced to speed up the rate of convergence of the iteration process. Under some sufficient assumptions on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carpathian Journal of Mathematics 2020-01, Vol.36 (1), p.91-107
Hauptverfasser: Munkong, Jiraprapa, Van Dinh, Bui, Ungchittrakool, Kasamsuk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose an algorithm with two inertial term extrapolation steps for solving bilevel equilibrium problem in a real Hilbert space. The inertial term extrapolation step is introduced to speed up the rate of convergence of the iteration process. Under some sufficient assumptions on the bifunctions involving pseudomonotone and Lipschitz-type conditions, we obtain the strong convergence of the iterative sequence generated by the proposed algorithm. A numerical experiment is performed to illustrate the numerical behavior of the algorithm and also comparison with some other related algorithms in the literature.
ISSN:1584-2851
1843-4401
DOI:10.37193/CJM.2020.01.09