Some surjectivity results for operators of generalized monotone type via a topological degree

We introduce a topological degree for a class of operators of generalized monotone type in reflexive Banach spaces, based on the recent Berkovits degree. Using the degree theory, we give some surjectivity results for operators of generalized monotone type in reflexive Banach spaces. In the Hilbert s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carpathian Journal of Mathematics 2018-01, Vol.34 (3), p.333-340
Hauptverfasser: Hong, Suk-Joon, Kim, In-Sook
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a topological degree for a class of operators of generalized monotone type in reflexive Banach spaces, based on the recent Berkovits degree. Using the degree theory, we give some surjectivity results for operators of generalized monotone type in reflexive Banach spaces. In the Hilbert space case, this reduces to the celebrated Browder-Minty theorem for monotone operators.
ISSN:1584-2851
1843-4401
DOI:10.37193/CJM.2018.03.07