Some surjectivity results for operators of generalized monotone type via a topological degree
We introduce a topological degree for a class of operators of generalized monotone type in reflexive Banach spaces, based on the recent Berkovits degree. Using the degree theory, we give some surjectivity results for operators of generalized monotone type in reflexive Banach spaces. In the Hilbert s...
Gespeichert in:
Veröffentlicht in: | Carpathian Journal of Mathematics 2018-01, Vol.34 (3), p.333-340 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce a topological degree for a class of operators of generalized monotone type in reflexive Banach spaces, based on the recent Berkovits degree. Using the degree theory, we give some surjectivity results for operators of generalized monotone type in reflexive Banach spaces. In the Hilbert space case, this reduces to the celebrated Browder-Minty theorem for monotone operators. |
---|---|
ISSN: | 1584-2851 1843-4401 |
DOI: | 10.37193/CJM.2018.03.07 |