Experimental and numerical approaches for optimizing conjunction area design to enhance switching efficiency in single-nozzle multi-ink bioprinting systems
Three-dimensional (3D) bioprinting has emerged as a promising technology in the field of tissue engineering. Notably, the advancement of multi-ink printing technology is crucial for further progress in 3D bioprinting. In this study, we developed a single-nozzle system with multiple inlets for multi-...
Gespeichert in:
Veröffentlicht in: | International journal of bioprinting 2024-08, p.4091 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Three-dimensional (3D) bioprinting has emerged as a promising technology in the field of tissue engineering. Notably, the advancement of multi-ink printing technology is crucial for further progress in 3D bioprinting. In this study, we developed a single-nozzle system with multiple inlets for multi-ink bioprinting that achieves high switching efficiency through a combination of numerical and experimental approaches. This single-nozzle system demonstrates the potential for higher-resolution printing and quicker ink switching compared with multi-nozzle printing systems. In general, inks used in bioprinting have low viscosity ( |
---|---|
ISSN: | 2424-7723 2424-8002 |
DOI: | 10.36922/ijb.4091 |