On Semi-Riemannian Manifolds Satisfying Some Generalized Einstein Metric Conditions
The derivation-commutator $R \cdot C - C \cdot R$ of a semi-Riemannian manifold $(M,g)$, $\dim M \geq 4$, formed by its Riemann-Christoffel curvature tensor $R$ and the Weyl conformal curvature tensor $C$, under some assumptions, can be expressed as a linear combination of $(0,6)$-Tachibana tensors...
Gespeichert in:
Veröffentlicht in: | International Electronic Journal of Geometry 2023-10, Vol.16 (2), p.539-576 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The derivation-commutator $R \cdot C - C \cdot R$ of a semi-Riemannian manifold $(M,g)$, $\dim M \geq 4$, formed by its Riemann-Christoffel curvature tensor $R$ and the Weyl conformal curvature tensor $C$, under some assumptions, can be expressed as a linear combination of $(0,6)$-Tachibana tensors $Q(A,T)$, where $A$ is a symmetric $(0,2)$-tensor and $T$ a generalized curvature tensor. These conditions form a family of generalized Einstein metric conditions. In this survey paper we present recent results on manifolds and submanifolds, and in particular hypersurfaces, satisfying such conditions. |
---|---|
ISSN: | 1307-5624 1307-5624 |
DOI: | 10.36890/iejg.1323352 |