On Semi-Riemannian Manifolds Satisfying Some Generalized Einstein Metric Conditions

The derivation-commutator $R \cdot C - C \cdot R$ of a semi-Riemannian manifold $(M,g)$, $\dim M \geq 4$, formed by its Riemann-Christoffel curvature tensor $R$ and the Weyl conformal curvature tensor $C$, under some assumptions, can be expressed as a linear combination of $(0,6)$-Tachibana tensors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Electronic Journal of Geometry 2023-10, Vol.16 (2), p.539-576
Hauptverfasser: Deszcz, Ryszard, Głogowska, Małgorzata, Hotloś, Marian, Petrović-torgašev, Miroslava, Zafindratafa, Georges
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The derivation-commutator $R \cdot C - C \cdot R$ of a semi-Riemannian manifold $(M,g)$, $\dim M \geq 4$, formed by its Riemann-Christoffel curvature tensor $R$ and the Weyl conformal curvature tensor $C$, under some assumptions, can be expressed as a linear combination of $(0,6)$-Tachibana tensors $Q(A,T)$, where $A$ is a symmetric $(0,2)$-tensor and $T$ a generalized curvature tensor. These conditions form a family of generalized Einstein metric conditions. In this survey paper we present recent results on manifolds and submanifolds, and in particular hypersurfaces, satisfying such conditions.
ISSN:1307-5624
1307-5624
DOI:10.36890/iejg.1323352