BAYÉSIEN VERSUS CMA-ES : OPTIMISATION DES HYPERPARAMÈTRES ML

L'optimisation des hyperparamètres est une étape cruciale dans le processus de développement de modèles de machine learning performants. Parmi les approches d'optimisation les plus populaires, on retrouve l'optimisation bayésienne et le CMA-ES (Covariance Matrix Adaptation Evolution S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Management & data science 2023
1. Verfasser: Rajaoui, Nordine
Format: Artikel
Sprache:fre
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:L'optimisation des hyperparamètres est une étape cruciale dans le processus de développement de modèles de machine learning performants. Parmi les approches d'optimisation les plus populaires, on retrouve l'optimisation bayésienne et le CMA-ES (Covariance Matrix Adaptation Evolution Strategy), deux méthodes puissantes qui visent à explorer efficacement l'espace des hyperparamètres et à identifier les combinaisons optimales. Dans cet article, nous nous pencherons sur la comparaison entre l'optimisation bayésienne et le CMA-ES dans le cadre de l'optimisation des hyperparamètres en machine learning.
ISSN:2555-7017
2555-7017
DOI:10.36863/mds.a.24309