Performance and Computation Time Enhancement of Various Machine Learning Techniques for NSL-KDD Dataset

To develop an effective intrusion detection system we definitely need a standardize dataset with a huge number of correct instances without missing values. This would significantly help the system to train and test for real-time use. Previously for research purpose, KDD-CUP’99 dataset has been used,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of recent technology and engineering 2020-03, Vol.8 (6), p.4726-4730
Hauptverfasser: K V, Pradeep, K., Anusha, S., Nachiyappan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4730
container_issue 6
container_start_page 4726
container_title International journal of recent technology and engineering
container_volume 8
creator K V, Pradeep
K., Anusha
S., Nachiyappan
description To develop an effective intrusion detection system we definitely need a standardize dataset with a huge number of correct instances without missing values. This would significantly help the system to train and test for real-time use. Previously for research purpose, KDD-CUP’99 dataset has been used, but later on, it has been seen that it is not so useful for training the model as it consists a lot of missing and abundant values. All this issue have been tackled in NSL dataset. To analyze the capabilities of the dataset for intrusion detection system we have analyzed various machine learning classification algorithm to classify the attack over any network. This paper has explored many facts about the dataset and the computation time.
doi_str_mv 10.35940/ijrte.F9877.038620
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_35940_ijrte_F9877_038620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_35940_ijrte_F9877_038620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c890-2d201c392716e2cbb42de4b73a0557f23f15f40dcbcf235583890c03425e1db03</originalsourceid><addsrcrecordid>eNpNkMtOwzAURC0EElXpF7DxD6Rc23GcLFEfUBEeEhHbyHGuW1fEKXa64O8JLQtWM6PRzOIQcstgLmSRwp3bhwHn6yJXag4izzhckAnnSiUiV_nlP39NZjHuAYCJjKUim5DtGwbbh057g1T7li767nAc9OB6TyvXIV353W_ZoR9ob-mHDq4_Rvqszc55pCXq4J3f0grNzruvI0Y6HtKX9zJ5Wi7pUg864nBDrqz-jDj70ymp1qtq8ZiUrw-bxX2ZmLyAhLccmBEFVyxDbpom5S2mjRIapFSWC8ukTaE1jRmDlLkYVwZEyiWytgExJeJ8a0IfY0BbH4LrdPiuGdQnWvWJVn2iVZ9piR8eyV7x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Performance and Computation Time Enhancement of Various Machine Learning Techniques for NSL-KDD Dataset</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>K V, Pradeep ; K., Anusha ; S., Nachiyappan</creator><creatorcontrib>K V, Pradeep ; K., Anusha ; S., Nachiyappan ; Asst. Prof, SCOPE, VIT University, Chennai ; Asst. Prof.(Sr), SCOPE, VIT University, Chennai ; Assoc. Prof. SCOPE, VIT University, Chennai</creatorcontrib><description>To develop an effective intrusion detection system we definitely need a standardize dataset with a huge number of correct instances without missing values. This would significantly help the system to train and test for real-time use. Previously for research purpose, KDD-CUP’99 dataset has been used, but later on, it has been seen that it is not so useful for training the model as it consists a lot of missing and abundant values. All this issue have been tackled in NSL dataset. To analyze the capabilities of the dataset for intrusion detection system we have analyzed various machine learning classification algorithm to classify the attack over any network. This paper has explored many facts about the dataset and the computation time.</description><identifier>ISSN: 2277-3878</identifier><identifier>EISSN: 2277-3878</identifier><identifier>DOI: 10.35940/ijrte.F9877.038620</identifier><language>eng</language><ispartof>International journal of recent technology and engineering, 2020-03, Vol.8 (6), p.4726-4730</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27931,27932</link.rule.ids></links><search><creatorcontrib>K V, Pradeep</creatorcontrib><creatorcontrib>K., Anusha</creatorcontrib><creatorcontrib>S., Nachiyappan</creatorcontrib><creatorcontrib>Asst. Prof, SCOPE, VIT University, Chennai</creatorcontrib><creatorcontrib>Asst. Prof.(Sr), SCOPE, VIT University, Chennai</creatorcontrib><creatorcontrib>Assoc. Prof. SCOPE, VIT University, Chennai</creatorcontrib><title>Performance and Computation Time Enhancement of Various Machine Learning Techniques for NSL-KDD Dataset</title><title>International journal of recent technology and engineering</title><description>To develop an effective intrusion detection system we definitely need a standardize dataset with a huge number of correct instances without missing values. This would significantly help the system to train and test for real-time use. Previously for research purpose, KDD-CUP’99 dataset has been used, but later on, it has been seen that it is not so useful for training the model as it consists a lot of missing and abundant values. All this issue have been tackled in NSL dataset. To analyze the capabilities of the dataset for intrusion detection system we have analyzed various machine learning classification algorithm to classify the attack over any network. This paper has explored many facts about the dataset and the computation time.</description><issn>2277-3878</issn><issn>2277-3878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAURC0EElXpF7DxD6Rc23GcLFEfUBEeEhHbyHGuW1fEKXa64O8JLQtWM6PRzOIQcstgLmSRwp3bhwHn6yJXag4izzhckAnnSiUiV_nlP39NZjHuAYCJjKUim5DtGwbbh057g1T7li767nAc9OB6TyvXIV353W_ZoR9ob-mHDq4_Rvqszc55pCXq4J3f0grNzruvI0Y6HtKX9zJ5Wi7pUg864nBDrqz-jDj70ymp1qtq8ZiUrw-bxX2ZmLyAhLccmBEFVyxDbpom5S2mjRIapFSWC8ukTaE1jRmDlLkYVwZEyiWytgExJeJ8a0IfY0BbH4LrdPiuGdQnWvWJVn2iVZ9piR8eyV7x</recordid><startdate>20200330</startdate><enddate>20200330</enddate><creator>K V, Pradeep</creator><creator>K., Anusha</creator><creator>S., Nachiyappan</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200330</creationdate><title>Performance and Computation Time Enhancement of Various Machine Learning Techniques for NSL-KDD Dataset</title><author>K V, Pradeep ; K., Anusha ; S., Nachiyappan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c890-2d201c392716e2cbb42de4b73a0557f23f15f40dcbcf235583890c03425e1db03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>online_resources</toplevel><creatorcontrib>K V, Pradeep</creatorcontrib><creatorcontrib>K., Anusha</creatorcontrib><creatorcontrib>S., Nachiyappan</creatorcontrib><creatorcontrib>Asst. Prof, SCOPE, VIT University, Chennai</creatorcontrib><creatorcontrib>Asst. Prof.(Sr), SCOPE, VIT University, Chennai</creatorcontrib><creatorcontrib>Assoc. Prof. SCOPE, VIT University, Chennai</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of recent technology and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>K V, Pradeep</au><au>K., Anusha</au><au>S., Nachiyappan</au><aucorp>Asst. Prof, SCOPE, VIT University, Chennai</aucorp><aucorp>Asst. Prof.(Sr), SCOPE, VIT University, Chennai</aucorp><aucorp>Assoc. Prof. SCOPE, VIT University, Chennai</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance and Computation Time Enhancement of Various Machine Learning Techniques for NSL-KDD Dataset</atitle><jtitle>International journal of recent technology and engineering</jtitle><date>2020-03-30</date><risdate>2020</risdate><volume>8</volume><issue>6</issue><spage>4726</spage><epage>4730</epage><pages>4726-4730</pages><issn>2277-3878</issn><eissn>2277-3878</eissn><abstract>To develop an effective intrusion detection system we definitely need a standardize dataset with a huge number of correct instances without missing values. This would significantly help the system to train and test for real-time use. Previously for research purpose, KDD-CUP’99 dataset has been used, but later on, it has been seen that it is not so useful for training the model as it consists a lot of missing and abundant values. All this issue have been tackled in NSL dataset. To analyze the capabilities of the dataset for intrusion detection system we have analyzed various machine learning classification algorithm to classify the attack over any network. This paper has explored many facts about the dataset and the computation time.</abstract><doi>10.35940/ijrte.F9877.038620</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2277-3878
ispartof International journal of recent technology and engineering, 2020-03, Vol.8 (6), p.4726-4730
issn 2277-3878
2277-3878
language eng
recordid cdi_crossref_primary_10_35940_ijrte_F9877_038620
source EZB-FREE-00999 freely available EZB journals
title Performance and Computation Time Enhancement of Various Machine Learning Techniques for NSL-KDD Dataset
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T08%3A42%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20and%20Computation%20Time%20Enhancement%20of%20Various%20Machine%20Learning%20Techniques%20for%20NSL-KDD%20Dataset&rft.jtitle=International%20journal%20of%20recent%20technology%20and%20engineering&rft.au=K%20V,%20Pradeep&rft.aucorp=Asst.%20Prof,%20SCOPE,%20VIT%20University,%20Chennai&rft.date=2020-03-30&rft.volume=8&rft.issue=6&rft.spage=4726&rft.epage=4730&rft.pages=4726-4730&rft.issn=2277-3878&rft.eissn=2277-3878&rft_id=info:doi/10.35940/ijrte.F9877.038620&rft_dat=%3Ccrossref%3E10_35940_ijrte_F9877_038620%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true