Performance and Computation Time Enhancement of Various Machine Learning Techniques for NSL-KDD Dataset
To develop an effective intrusion detection system we definitely need a standardize dataset with a huge number of correct instances without missing values. This would significantly help the system to train and test for real-time use. Previously for research purpose, KDD-CUP’99 dataset has been used,...
Gespeichert in:
Veröffentlicht in: | International journal of recent technology and engineering 2020-03, Vol.8 (6), p.4726-4730 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4730 |
---|---|
container_issue | 6 |
container_start_page | 4726 |
container_title | International journal of recent technology and engineering |
container_volume | 8 |
creator | K V, Pradeep K., Anusha S., Nachiyappan |
description | To develop an effective intrusion detection system we definitely need a standardize dataset with a huge number of correct instances without missing values. This would significantly help the system to train and test for real-time use. Previously for research purpose, KDD-CUP’99 dataset has been used, but later on, it has been seen that it is not so useful for training the model as it consists a lot of missing and abundant values. All this issue have been tackled in NSL dataset. To analyze the capabilities of the dataset for intrusion detection system we have analyzed various machine learning classification algorithm to classify the attack over any network. This paper has explored many facts about the dataset and the computation time. |
doi_str_mv | 10.35940/ijrte.F9877.038620 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_35940_ijrte_F9877_038620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_35940_ijrte_F9877_038620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c890-2d201c392716e2cbb42de4b73a0557f23f15f40dcbcf235583890c03425e1db03</originalsourceid><addsrcrecordid>eNpNkMtOwzAURC0EElXpF7DxD6Rc23GcLFEfUBEeEhHbyHGuW1fEKXa64O8JLQtWM6PRzOIQcstgLmSRwp3bhwHn6yJXag4izzhckAnnSiUiV_nlP39NZjHuAYCJjKUim5DtGwbbh057g1T7li767nAc9OB6TyvXIV353W_ZoR9ob-mHDq4_Rvqszc55pCXq4J3f0grNzruvI0Y6HtKX9zJ5Wi7pUg864nBDrqz-jDj70ymp1qtq8ZiUrw-bxX2ZmLyAhLccmBEFVyxDbpom5S2mjRIapFSWC8ukTaE1jRmDlLkYVwZEyiWytgExJeJ8a0IfY0BbH4LrdPiuGdQnWvWJVn2iVZ9piR8eyV7x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Performance and Computation Time Enhancement of Various Machine Learning Techniques for NSL-KDD Dataset</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>K V, Pradeep ; K., Anusha ; S., Nachiyappan</creator><creatorcontrib>K V, Pradeep ; K., Anusha ; S., Nachiyappan ; Assoc. Prof. SCOPE, VIT University, Chennai ; Asst. Prof.(Sr), SCOPE, VIT University, Chennai ; Asst. Prof, SCOPE, VIT University, Chennai</creatorcontrib><description>To develop an effective intrusion detection system we definitely need a standardize dataset with a huge number of correct instances without missing values. This would significantly help the system to train and test for real-time use. Previously for research purpose, KDD-CUP’99 dataset has been used, but later on, it has been seen that it is not so useful for training the model as it consists a lot of missing and abundant values. All this issue have been tackled in NSL dataset. To analyze the capabilities of the dataset for intrusion detection system we have analyzed various machine learning classification algorithm to classify the attack over any network. This paper has explored many facts about the dataset and the computation time.</description><identifier>ISSN: 2277-3878</identifier><identifier>EISSN: 2277-3878</identifier><identifier>DOI: 10.35940/ijrte.F9877.038620</identifier><language>eng</language><ispartof>International journal of recent technology and engineering, 2020-03, Vol.8 (6), p.4726-4730</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>K V, Pradeep</creatorcontrib><creatorcontrib>K., Anusha</creatorcontrib><creatorcontrib>S., Nachiyappan</creatorcontrib><creatorcontrib>Assoc. Prof. SCOPE, VIT University, Chennai</creatorcontrib><creatorcontrib>Asst. Prof.(Sr), SCOPE, VIT University, Chennai</creatorcontrib><creatorcontrib>Asst. Prof, SCOPE, VIT University, Chennai</creatorcontrib><title>Performance and Computation Time Enhancement of Various Machine Learning Techniques for NSL-KDD Dataset</title><title>International journal of recent technology and engineering</title><description>To develop an effective intrusion detection system we definitely need a standardize dataset with a huge number of correct instances without missing values. This would significantly help the system to train and test for real-time use. Previously for research purpose, KDD-CUP’99 dataset has been used, but later on, it has been seen that it is not so useful for training the model as it consists a lot of missing and abundant values. All this issue have been tackled in NSL dataset. To analyze the capabilities of the dataset for intrusion detection system we have analyzed various machine learning classification algorithm to classify the attack over any network. This paper has explored many facts about the dataset and the computation time.</description><issn>2277-3878</issn><issn>2277-3878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAURC0EElXpF7DxD6Rc23GcLFEfUBEeEhHbyHGuW1fEKXa64O8JLQtWM6PRzOIQcstgLmSRwp3bhwHn6yJXag4izzhckAnnSiUiV_nlP39NZjHuAYCJjKUim5DtGwbbh057g1T7li767nAc9OB6TyvXIV353W_ZoR9ob-mHDq4_Rvqszc55pCXq4J3f0grNzruvI0Y6HtKX9zJ5Wi7pUg864nBDrqz-jDj70ymp1qtq8ZiUrw-bxX2ZmLyAhLccmBEFVyxDbpom5S2mjRIapFSWC8ukTaE1jRmDlLkYVwZEyiWytgExJeJ8a0IfY0BbH4LrdPiuGdQnWvWJVn2iVZ9piR8eyV7x</recordid><startdate>20200330</startdate><enddate>20200330</enddate><creator>K V, Pradeep</creator><creator>K., Anusha</creator><creator>S., Nachiyappan</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200330</creationdate><title>Performance and Computation Time Enhancement of Various Machine Learning Techniques for NSL-KDD Dataset</title><author>K V, Pradeep ; K., Anusha ; S., Nachiyappan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c890-2d201c392716e2cbb42de4b73a0557f23f15f40dcbcf235583890c03425e1db03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>online_resources</toplevel><creatorcontrib>K V, Pradeep</creatorcontrib><creatorcontrib>K., Anusha</creatorcontrib><creatorcontrib>S., Nachiyappan</creatorcontrib><creatorcontrib>Assoc. Prof. SCOPE, VIT University, Chennai</creatorcontrib><creatorcontrib>Asst. Prof.(Sr), SCOPE, VIT University, Chennai</creatorcontrib><creatorcontrib>Asst. Prof, SCOPE, VIT University, Chennai</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of recent technology and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>K V, Pradeep</au><au>K., Anusha</au><au>S., Nachiyappan</au><aucorp>Assoc. Prof. SCOPE, VIT University, Chennai</aucorp><aucorp>Asst. Prof.(Sr), SCOPE, VIT University, Chennai</aucorp><aucorp>Asst. Prof, SCOPE, VIT University, Chennai</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance and Computation Time Enhancement of Various Machine Learning Techniques for NSL-KDD Dataset</atitle><jtitle>International journal of recent technology and engineering</jtitle><date>2020-03-30</date><risdate>2020</risdate><volume>8</volume><issue>6</issue><spage>4726</spage><epage>4730</epage><pages>4726-4730</pages><issn>2277-3878</issn><eissn>2277-3878</eissn><abstract>To develop an effective intrusion detection system we definitely need a standardize dataset with a huge number of correct instances without missing values. This would significantly help the system to train and test for real-time use. Previously for research purpose, KDD-CUP’99 dataset has been used, but later on, it has been seen that it is not so useful for training the model as it consists a lot of missing and abundant values. All this issue have been tackled in NSL dataset. To analyze the capabilities of the dataset for intrusion detection system we have analyzed various machine learning classification algorithm to classify the attack over any network. This paper has explored many facts about the dataset and the computation time.</abstract><doi>10.35940/ijrte.F9877.038620</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2277-3878 |
ispartof | International journal of recent technology and engineering, 2020-03, Vol.8 (6), p.4726-4730 |
issn | 2277-3878 2277-3878 |
language | eng |
recordid | cdi_crossref_primary_10_35940_ijrte_F9877_038620 |
source | EZB-FREE-00999 freely available EZB journals |
title | Performance and Computation Time Enhancement of Various Machine Learning Techniques for NSL-KDD Dataset |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-10T21%3A54%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20and%20Computation%20Time%20Enhancement%20of%20Various%20Machine%20Learning%20Techniques%20for%20NSL-KDD%20Dataset&rft.jtitle=International%20journal%20of%20recent%20technology%20and%20engineering&rft.au=K%20V,%20Pradeep&rft.aucorp=Assoc.%20Prof.%20SCOPE,%20VIT%20University,%20Chennai&rft.date=2020-03-30&rft.volume=8&rft.issue=6&rft.spage=4726&rft.epage=4730&rft.pages=4726-4730&rft.issn=2277-3878&rft.eissn=2277-3878&rft_id=info:doi/10.35940/ijrte.F9877.038620&rft_dat=%3Ccrossref%3E10_35940_ijrte_F9877_038620%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |