Performance and Computation Time Enhancement of Various Machine Learning Techniques for NSL-KDD Dataset

To develop an effective intrusion detection system we definitely need a standardize dataset with a huge number of correct instances without missing values. This would significantly help the system to train and test for real-time use. Previously for research purpose, KDD-CUP’99 dataset has been used,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of recent technology and engineering 2020-03, Vol.8 (6), p.4726-4730
Hauptverfasser: K V, Pradeep, K., Anusha, S., Nachiyappan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To develop an effective intrusion detection system we definitely need a standardize dataset with a huge number of correct instances without missing values. This would significantly help the system to train and test for real-time use. Previously for research purpose, KDD-CUP’99 dataset has been used, but later on, it has been seen that it is not so useful for training the model as it consists a lot of missing and abundant values. All this issue have been tackled in NSL dataset. To analyze the capabilities of the dataset for intrusion detection system we have analyzed various machine learning classification algorithm to classify the attack over any network. This paper has explored many facts about the dataset and the computation time.
ISSN:2277-3878
2277-3878
DOI:10.35940/ijrte.F9877.038620