Telugu Speech Recognition on LSF and DNN Techniques

This fast world is running with machine and human interaction. This kind of interaction is not an easy task. For proper interaction between human and machine speech recognition is major area where the machine should understand the speech properly to perform the tasks. So ASR have been developed whic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of recent technology and engineering 2019-11, Vol.8 (4), p.7160-7162
Hauptverfasser: Sangeetha, Y., Praveen Kumar, Dr. Archek, Maheshwari, Neerudu Uma, Srinivas, Rodda, Jyothi, P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7162
container_issue 4
container_start_page 7160
container_title International journal of recent technology and engineering
container_volume 8
creator Sangeetha, Y.
Praveen Kumar, Dr. Archek
Maheshwari, Neerudu Uma
Srinivas, Rodda
Jyothi, P.
description This fast world is running with machine and human interaction. This kind of interaction is not an easy task. For proper interaction between human and machine speech recognition is major area where the machine should understand the speech properly to perform the tasks. So ASR have been developed which improvised the HMIS (“Human Machine Interaction systems”) technology in to the deep level. This research focuses on speech recognition over “Telugu language”, which is used in Telugu HMI systems. This paper uses LSF (linear spectral frequencies) technique for feature extraction and DNN for feature classification which finally produced the effective results. Many other recognition systems also used these techniques but for Telugu language this are the most suitable techniques.
doi_str_mv 10.35940/ijrte.D5257.118419
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_35940_ijrte_D5257_118419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_35940_ijrte_D5257_118419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c899-69221090145b9a330e8e73bdbb908d71237458c8c7d464444e6fe98f4c3c8bf23</originalsourceid><addsrcrecordid>eNpNj9FKwzAYhYM4cMw9wW7yAq1J_qRJLmVzOigTXO9Dm_6dHbOdyXrh21s6LzwcOAcOHPgIWXGWgrKSPbWncMV0o4TSKedGcntH5kJonYDR5v5ffyDLGE-MMQ4Zl5DNCRR4Ho4DPVwQ_Sf9QN8fu_ba9h0dnR-2tOxqutnvaTHuXfs9YHwks6Y8R1z-5YIU25di_Zbk76-79XOeeGNtklkhOLOMS1XZEoChQQ1VXVWWmVpzAVoq443XtczkKMwatKaRHrypGgELArdbH_oYAzbuEtqvMvw4ztxE7iZyN5G7Gzn8AikfS0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Telugu Speech Recognition on LSF and DNN Techniques</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Sangeetha, Y. ; Praveen Kumar, Dr. Archek ; Maheshwari, Neerudu Uma ; Srinivas, Rodda ; Jyothi, P.</creator><creatorcontrib>Sangeetha, Y. ; Praveen Kumar, Dr. Archek ; Maheshwari, Neerudu Uma ; Srinivas, Rodda ; Jyothi, P. ; Professor, HOD, Department of ECE, Malla Reddy College of Engineering for Women, Hyderabad, Telangana, India ; Assistant Professor, Department of ECE, Malla Reddy College of Engineering for Women, Hyderabad, Telangana, India</creatorcontrib><description>This fast world is running with machine and human interaction. This kind of interaction is not an easy task. For proper interaction between human and machine speech recognition is major area where the machine should understand the speech properly to perform the tasks. So ASR have been developed which improvised the HMIS (“Human Machine Interaction systems”) technology in to the deep level. This research focuses on speech recognition over “Telugu language”, which is used in Telugu HMI systems. This paper uses LSF (linear spectral frequencies) technique for feature extraction and DNN for feature classification which finally produced the effective results. Many other recognition systems also used these techniques but for Telugu language this are the most suitable techniques.</description><identifier>ISSN: 2277-3878</identifier><identifier>EISSN: 2277-3878</identifier><identifier>DOI: 10.35940/ijrte.D5257.118419</identifier><language>eng</language><ispartof>International journal of recent technology and engineering, 2019-11, Vol.8 (4), p.7160-7162</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Sangeetha, Y.</creatorcontrib><creatorcontrib>Praveen Kumar, Dr. Archek</creatorcontrib><creatorcontrib>Maheshwari, Neerudu Uma</creatorcontrib><creatorcontrib>Srinivas, Rodda</creatorcontrib><creatorcontrib>Jyothi, P.</creatorcontrib><creatorcontrib>Professor, HOD, Department of ECE, Malla Reddy College of Engineering for Women, Hyderabad, Telangana, India</creatorcontrib><creatorcontrib>Assistant Professor, Department of ECE, Malla Reddy College of Engineering for Women, Hyderabad, Telangana, India</creatorcontrib><title>Telugu Speech Recognition on LSF and DNN Techniques</title><title>International journal of recent technology and engineering</title><description>This fast world is running with machine and human interaction. This kind of interaction is not an easy task. For proper interaction between human and machine speech recognition is major area where the machine should understand the speech properly to perform the tasks. So ASR have been developed which improvised the HMIS (“Human Machine Interaction systems”) technology in to the deep level. This research focuses on speech recognition over “Telugu language”, which is used in Telugu HMI systems. This paper uses LSF (linear spectral frequencies) technique for feature extraction and DNN for feature classification which finally produced the effective results. Many other recognition systems also used these techniques but for Telugu language this are the most suitable techniques.</description><issn>2277-3878</issn><issn>2277-3878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNj9FKwzAYhYM4cMw9wW7yAq1J_qRJLmVzOigTXO9Dm_6dHbOdyXrh21s6LzwcOAcOHPgIWXGWgrKSPbWncMV0o4TSKedGcntH5kJonYDR5v5ffyDLGE-MMQ4Zl5DNCRR4Ho4DPVwQ_Sf9QN8fu_ba9h0dnR-2tOxqutnvaTHuXfs9YHwks6Y8R1z-5YIU25di_Zbk76-79XOeeGNtklkhOLOMS1XZEoChQQ1VXVWWmVpzAVoq443XtczkKMwatKaRHrypGgELArdbH_oYAzbuEtqvMvw4ztxE7iZyN5G7Gzn8AikfS0Q</recordid><startdate>20191130</startdate><enddate>20191130</enddate><creator>Sangeetha, Y.</creator><creator>Praveen Kumar, Dr. Archek</creator><creator>Maheshwari, Neerudu Uma</creator><creator>Srinivas, Rodda</creator><creator>Jyothi, P.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191130</creationdate><title>Telugu Speech Recognition on LSF and DNN Techniques</title><author>Sangeetha, Y. ; Praveen Kumar, Dr. Archek ; Maheshwari, Neerudu Uma ; Srinivas, Rodda ; Jyothi, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c899-69221090145b9a330e8e73bdbb908d71237458c8c7d464444e6fe98f4c3c8bf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Sangeetha, Y.</creatorcontrib><creatorcontrib>Praveen Kumar, Dr. Archek</creatorcontrib><creatorcontrib>Maheshwari, Neerudu Uma</creatorcontrib><creatorcontrib>Srinivas, Rodda</creatorcontrib><creatorcontrib>Jyothi, P.</creatorcontrib><creatorcontrib>Professor, HOD, Department of ECE, Malla Reddy College of Engineering for Women, Hyderabad, Telangana, India</creatorcontrib><creatorcontrib>Assistant Professor, Department of ECE, Malla Reddy College of Engineering for Women, Hyderabad, Telangana, India</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of recent technology and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sangeetha, Y.</au><au>Praveen Kumar, Dr. Archek</au><au>Maheshwari, Neerudu Uma</au><au>Srinivas, Rodda</au><au>Jyothi, P.</au><aucorp>Professor, HOD, Department of ECE, Malla Reddy College of Engineering for Women, Hyderabad, Telangana, India</aucorp><aucorp>Assistant Professor, Department of ECE, Malla Reddy College of Engineering for Women, Hyderabad, Telangana, India</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Telugu Speech Recognition on LSF and DNN Techniques</atitle><jtitle>International journal of recent technology and engineering</jtitle><date>2019-11-30</date><risdate>2019</risdate><volume>8</volume><issue>4</issue><spage>7160</spage><epage>7162</epage><pages>7160-7162</pages><issn>2277-3878</issn><eissn>2277-3878</eissn><abstract>This fast world is running with machine and human interaction. This kind of interaction is not an easy task. For proper interaction between human and machine speech recognition is major area where the machine should understand the speech properly to perform the tasks. So ASR have been developed which improvised the HMIS (“Human Machine Interaction systems”) technology in to the deep level. This research focuses on speech recognition over “Telugu language”, which is used in Telugu HMI systems. This paper uses LSF (linear spectral frequencies) technique for feature extraction and DNN for feature classification which finally produced the effective results. Many other recognition systems also used these techniques but for Telugu language this are the most suitable techniques.</abstract><doi>10.35940/ijrte.D5257.118419</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2277-3878
ispartof International journal of recent technology and engineering, 2019-11, Vol.8 (4), p.7160-7162
issn 2277-3878
2277-3878
language eng
recordid cdi_crossref_primary_10_35940_ijrte_D5257_118419
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Telugu Speech Recognition on LSF and DNN Techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T23%3A46%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Telugu%20Speech%20Recognition%20on%20LSF%20and%20DNN%20Techniques&rft.jtitle=International%20journal%20of%20recent%20technology%20and%20engineering&rft.au=Sangeetha,%20Y.&rft.aucorp=Professor,%20HOD,%20Department%20of%20ECE,%20Malla%20Reddy%20College%20of%20Engineering%20for%20Women,%20Hyderabad,%20Telangana,%20India&rft.date=2019-11-30&rft.volume=8&rft.issue=4&rft.spage=7160&rft.epage=7162&rft.pages=7160-7162&rft.issn=2277-3878&rft.eissn=2277-3878&rft_id=info:doi/10.35940/ijrte.D5257.118419&rft_dat=%3Ccrossref%3E10_35940_ijrte_D5257_118419%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true