Telugu Speech Recognition on LSF and DNN Techniques
This fast world is running with machine and human interaction. This kind of interaction is not an easy task. For proper interaction between human and machine speech recognition is major area where the machine should understand the speech properly to perform the tasks. So ASR have been developed whic...
Gespeichert in:
Veröffentlicht in: | International journal of recent technology and engineering 2019-11, Vol.8 (4), p.7160-7162 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7162 |
---|---|
container_issue | 4 |
container_start_page | 7160 |
container_title | International journal of recent technology and engineering |
container_volume | 8 |
creator | Sangeetha, Y. Praveen Kumar, Dr. Archek Maheshwari, Neerudu Uma Srinivas, Rodda Jyothi, P. |
description | This fast world is running with machine and human interaction. This kind of interaction is not an easy task. For proper interaction between human and machine speech recognition is major area where the machine should understand the speech properly to perform the tasks. So ASR have been developed which improvised the HMIS (“Human Machine Interaction systems”) technology in to the deep level. This research focuses on speech recognition over “Telugu language”, which is used in Telugu HMI systems. This paper uses LSF (linear spectral frequencies) technique for feature extraction and DNN for feature classification which finally produced the effective results. Many other recognition systems also used these techniques but for Telugu language this are the most suitable techniques. |
doi_str_mv | 10.35940/ijrte.D5257.118419 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_35940_ijrte_D5257_118419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_35940_ijrte_D5257_118419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c899-69221090145b9a330e8e73bdbb908d71237458c8c7d464444e6fe98f4c3c8bf23</originalsourceid><addsrcrecordid>eNpNj9FKwzAYhYM4cMw9wW7yAq1J_qRJLmVzOigTXO9Dm_6dHbOdyXrh21s6LzwcOAcOHPgIWXGWgrKSPbWncMV0o4TSKedGcntH5kJonYDR5v5ffyDLGE-MMQ4Zl5DNCRR4Ho4DPVwQ_Sf9QN8fu_ba9h0dnR-2tOxqutnvaTHuXfs9YHwks6Y8R1z-5YIU25di_Zbk76-79XOeeGNtklkhOLOMS1XZEoChQQ1VXVWWmVpzAVoq443XtczkKMwatKaRHrypGgELArdbH_oYAzbuEtqvMvw4ztxE7iZyN5G7Gzn8AikfS0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Telugu Speech Recognition on LSF and DNN Techniques</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Sangeetha, Y. ; Praveen Kumar, Dr. Archek ; Maheshwari, Neerudu Uma ; Srinivas, Rodda ; Jyothi, P.</creator><creatorcontrib>Sangeetha, Y. ; Praveen Kumar, Dr. Archek ; Maheshwari, Neerudu Uma ; Srinivas, Rodda ; Jyothi, P. ; Professor, HOD, Department of ECE, Malla Reddy College of Engineering for Women, Hyderabad, Telangana, India ; Assistant Professor, Department of ECE, Malla Reddy College of Engineering for Women, Hyderabad, Telangana, India</creatorcontrib><description>This fast world is running with machine and human interaction. This kind of interaction is not an easy task. For proper interaction between human and machine speech recognition is major area where the machine should understand the speech properly to perform the tasks. So ASR have been developed which improvised the HMIS (“Human Machine Interaction systems”) technology in to the deep level. This research focuses on speech recognition over “Telugu language”, which is used in Telugu HMI systems. This paper uses LSF (linear spectral frequencies) technique for feature extraction and DNN for feature classification which finally produced the effective results. Many other recognition systems also used these techniques but for Telugu language this are the most suitable techniques.</description><identifier>ISSN: 2277-3878</identifier><identifier>EISSN: 2277-3878</identifier><identifier>DOI: 10.35940/ijrte.D5257.118419</identifier><language>eng</language><ispartof>International journal of recent technology and engineering, 2019-11, Vol.8 (4), p.7160-7162</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Sangeetha, Y.</creatorcontrib><creatorcontrib>Praveen Kumar, Dr. Archek</creatorcontrib><creatorcontrib>Maheshwari, Neerudu Uma</creatorcontrib><creatorcontrib>Srinivas, Rodda</creatorcontrib><creatorcontrib>Jyothi, P.</creatorcontrib><creatorcontrib>Professor, HOD, Department of ECE, Malla Reddy College of Engineering for Women, Hyderabad, Telangana, India</creatorcontrib><creatorcontrib>Assistant Professor, Department of ECE, Malla Reddy College of Engineering for Women, Hyderabad, Telangana, India</creatorcontrib><title>Telugu Speech Recognition on LSF and DNN Techniques</title><title>International journal of recent technology and engineering</title><description>This fast world is running with machine and human interaction. This kind of interaction is not an easy task. For proper interaction between human and machine speech recognition is major area where the machine should understand the speech properly to perform the tasks. So ASR have been developed which improvised the HMIS (“Human Machine Interaction systems”) technology in to the deep level. This research focuses on speech recognition over “Telugu language”, which is used in Telugu HMI systems. This paper uses LSF (linear spectral frequencies) technique for feature extraction and DNN for feature classification which finally produced the effective results. Many other recognition systems also used these techniques but for Telugu language this are the most suitable techniques.</description><issn>2277-3878</issn><issn>2277-3878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNj9FKwzAYhYM4cMw9wW7yAq1J_qRJLmVzOigTXO9Dm_6dHbOdyXrh21s6LzwcOAcOHPgIWXGWgrKSPbWncMV0o4TSKedGcntH5kJonYDR5v5ffyDLGE-MMQ4Zl5DNCRR4Ho4DPVwQ_Sf9QN8fu_ba9h0dnR-2tOxqutnvaTHuXfs9YHwks6Y8R1z-5YIU25di_Zbk76-79XOeeGNtklkhOLOMS1XZEoChQQ1VXVWWmVpzAVoq443XtczkKMwatKaRHrypGgELArdbH_oYAzbuEtqvMvw4ztxE7iZyN5G7Gzn8AikfS0Q</recordid><startdate>20191130</startdate><enddate>20191130</enddate><creator>Sangeetha, Y.</creator><creator>Praveen Kumar, Dr. Archek</creator><creator>Maheshwari, Neerudu Uma</creator><creator>Srinivas, Rodda</creator><creator>Jyothi, P.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20191130</creationdate><title>Telugu Speech Recognition on LSF and DNN Techniques</title><author>Sangeetha, Y. ; Praveen Kumar, Dr. Archek ; Maheshwari, Neerudu Uma ; Srinivas, Rodda ; Jyothi, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c899-69221090145b9a330e8e73bdbb908d71237458c8c7d464444e6fe98f4c3c8bf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Sangeetha, Y.</creatorcontrib><creatorcontrib>Praveen Kumar, Dr. Archek</creatorcontrib><creatorcontrib>Maheshwari, Neerudu Uma</creatorcontrib><creatorcontrib>Srinivas, Rodda</creatorcontrib><creatorcontrib>Jyothi, P.</creatorcontrib><creatorcontrib>Professor, HOD, Department of ECE, Malla Reddy College of Engineering for Women, Hyderabad, Telangana, India</creatorcontrib><creatorcontrib>Assistant Professor, Department of ECE, Malla Reddy College of Engineering for Women, Hyderabad, Telangana, India</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of recent technology and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sangeetha, Y.</au><au>Praveen Kumar, Dr. Archek</au><au>Maheshwari, Neerudu Uma</au><au>Srinivas, Rodda</au><au>Jyothi, P.</au><aucorp>Professor, HOD, Department of ECE, Malla Reddy College of Engineering for Women, Hyderabad, Telangana, India</aucorp><aucorp>Assistant Professor, Department of ECE, Malla Reddy College of Engineering for Women, Hyderabad, Telangana, India</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Telugu Speech Recognition on LSF and DNN Techniques</atitle><jtitle>International journal of recent technology and engineering</jtitle><date>2019-11-30</date><risdate>2019</risdate><volume>8</volume><issue>4</issue><spage>7160</spage><epage>7162</epage><pages>7160-7162</pages><issn>2277-3878</issn><eissn>2277-3878</eissn><abstract>This fast world is running with machine and human interaction. This kind of interaction is not an easy task. For proper interaction between human and machine speech recognition is major area where the machine should understand the speech properly to perform the tasks. So ASR have been developed which improvised the HMIS (“Human Machine Interaction systems”) technology in to the deep level. This research focuses on speech recognition over “Telugu language”, which is used in Telugu HMI systems. This paper uses LSF (linear spectral frequencies) technique for feature extraction and DNN for feature classification which finally produced the effective results. Many other recognition systems also used these techniques but for Telugu language this are the most suitable techniques.</abstract><doi>10.35940/ijrte.D5257.118419</doi><tpages>3</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2277-3878 |
ispartof | International journal of recent technology and engineering, 2019-11, Vol.8 (4), p.7160-7162 |
issn | 2277-3878 2277-3878 |
language | eng |
recordid | cdi_crossref_primary_10_35940_ijrte_D5257_118419 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Telugu Speech Recognition on LSF and DNN Techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T23%3A46%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Telugu%20Speech%20Recognition%20on%20LSF%20and%20DNN%20Techniques&rft.jtitle=International%20journal%20of%20recent%20technology%20and%20engineering&rft.au=Sangeetha,%20Y.&rft.aucorp=Professor,%20HOD,%20Department%20of%20ECE,%20Malla%20Reddy%20College%20of%20Engineering%20for%20Women,%20Hyderabad,%20Telangana,%20India&rft.date=2019-11-30&rft.volume=8&rft.issue=4&rft.spage=7160&rft.epage=7162&rft.pages=7160-7162&rft.issn=2277-3878&rft.eissn=2277-3878&rft_id=info:doi/10.35940/ijrte.D5257.118419&rft_dat=%3Ccrossref%3E10_35940_ijrte_D5257_118419%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |