Telugu Speech Recognition on LSF and DNN Techniques

This fast world is running with machine and human interaction. This kind of interaction is not an easy task. For proper interaction between human and machine speech recognition is major area where the machine should understand the speech properly to perform the tasks. So ASR have been developed whic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of recent technology and engineering 2019-11, Vol.8 (4), p.7160-7162
Hauptverfasser: Sangeetha, Y., Praveen Kumar, Dr. Archek, Maheshwari, Neerudu Uma, Srinivas, Rodda, Jyothi, P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This fast world is running with machine and human interaction. This kind of interaction is not an easy task. For proper interaction between human and machine speech recognition is major area where the machine should understand the speech properly to perform the tasks. So ASR have been developed which improvised the HMIS (“Human Machine Interaction systems”) technology in to the deep level. This research focuses on speech recognition over “Telugu language”, which is used in Telugu HMI systems. This paper uses LSF (linear spectral frequencies) technique for feature extraction and DNN for feature classification which finally produced the effective results. Many other recognition systems also used these techniques but for Telugu language this are the most suitable techniques.
ISSN:2277-3878
2277-3878
DOI:10.35940/ijrte.D5257.118419