Modelling Prediction of Consumer Demand in the Tourism and Hospitality Based on Time Series

Travel services, unlike other services, cannot be stored or stockpiled for the future. Unsold hotel rooms, excursions or unfilled seats on the aeroplane cannot be sold over time. When real demand provides planned load factors, the business grows. This indicates the importance of demand forecasting f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of recent technology and engineering 2019-11, Vol.8 (4), p.8551-8558
Hauptverfasser: Danylyshyn, Bohdan, Shynkaruk, Lidiia, Prokopenko, Olha, Bondarenko, Svitlana, Veres, Kateryna, Kovalenko, Liliia
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Travel services, unlike other services, cannot be stored or stockpiled for the future. Unsold hotel rooms, excursions or unfilled seats on the aeroplane cannot be sold over time. When real demand provides planned load factors, the business grows. This indicates the importance of demand forecasting for all tourism enterprises.In forecasting tourism demand, quantitative and qualitative approaches are used. A quantitative approach is based on statistical information for the previous period, and a qualitative one is based on people's opinions and opinions. Multivariate regression analysis is the most popular model for forecasting tourist demand. It takes into account many factors on which the tourist flow depends. In conditions of limited data, a time series model is used, which gives a high forecast, especially in pronounced seasonality. For a more accurate forecast of tourism demand, it is necessary to combine quantitative and qualitative approaches.
ISSN:2277-3878
2277-3878
DOI:10.35940/ijrte.D4338.118419