A Cognitive Workload Identification using EEG Power Spectrum
Now a days, Electroencephalography (EEG) is popular to monitor human’s cognitive workload. EEG signals are delicate to the variation in cognitive load in various fields including observing cognitive workload for the intricate environment of military chores. Earlier to acquire the EEG signals high-co...
Gespeichert in:
Veröffentlicht in: | International journal of recent technology and engineering 2019-11, Vol.8 (4), p.8517-8524 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Now a days, Electroencephalography (EEG) is popular to monitor human’s cognitive workload. EEG signals are delicate to the variation in cognitive load in various fields including observing cognitive workload for the intricate environment of military chores. Earlier to acquire the EEG signals high-cost EEG systems were used which bounds their use but now a day’s low-cost headsets are available to capture EEG which makes it a promising set-up to measure cognitive workload. EEGs are initially preprocessed to reflect the artifacts present in it. After preprocessing, signals are ready for further processing. The power spectral density corresponds to the power distribution of EEG signal in the frequency domain which is used to assess the changes in the pattern of the brain. This paper discusses the present progress of research in cognitive workload identification and identifies the techniques associated with the cognitive workload. This proposed research gives the analysis of EEG signal power spectrum density (PSD) during resting state and cognitive workload activities of a human. With power spectral analysis of the EEG signal, seven statistical parameters have been calculated (minimum, maximum, mean, median, mode, standard deviation and range) have been calculated Analysis showed that the in cognitive workload, PSD has significantly changed if compared to the resting state. |
---|---|
ISSN: | 2277-3878 2277-3878 |
DOI: | 10.35940/ijrte.C5799.118419 |