Email Spam Detection using Ensemble Methods

The swiftly growth of spam email has escalated the need to upgrade the existing spam detection and filtration methods. There is the existence of several machine learning methods for the classification and detection of email spam but these lacks in some cases. In this research work ensemble methods a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of recent technology and engineering 2019-09, Vol.8 (3), p.4148-4153
Hauptverfasser: Bhardwaj, Uma, Sharma, Priti
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The swiftly growth of spam email has escalated the need to upgrade the existing spam detection and filtration methods. There is the existence of several machine learning methods for the classification and detection of email spam but these lacks in some cases. In this research work ensemble methods are adapted to detect the email spam. The machine learning methods of Multinomial Naïve Bayes and J48 Decision Tree algorithms are considered and ensembled. The considered ensemble methods are bagging and boosting. The experimentation is conducted on the dataset of CSDMC2010 Spam corpus. The results for the considered dataset are evaluated using individual classifiers, bagging, and boosting ensemble approaches. The system performance is accessed in terms of precision, recall, f-measure, and accuracy. The experimental outcomes indicates the distinguish results for the detection of email spam using ensemble methods.
ISSN:2277-3878
2277-3878
DOI:10.35940/ijrte.C5485.098319