Multilingual Lexicon based Approach for Real-Time Sentiment Analysis

The information on WWW has mounted to a greater height, overriding to fledgling analysis in the direction of sentiments using Artificial Intelligence. Sentiment Analysis deals with the calculus exploration of sentiments, opinions and subjectivity. In this paper, multilingual tweets are analyzed for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of recent technology and engineering 2020-07, Vol.9 (2), p.984-989
Hauptverfasser: Sharma, Swati, Bansal, Mamta
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The information on WWW has mounted to a greater height, overriding to fledgling analysis in the direction of sentiments using Artificial Intelligence. Sentiment Analysis deals with the calculus exploration of sentiments, opinions and subjectivity. In this paper, multilingual tweets are analyzed for identifying the polarities of various political parties like AAP, BJP, Samajwadi, BSP and Congress; so that the users will get an idea that to which party they should give their vote. The data is being analyzed using Natural Language Processing. Using different smoothening techniques, noise is removed from data, classified by using Machine learning algorithms and then the accuracy of the system is gauged using various evaluation precision measures. The central premise of this research is to benignant common people and politicians both. For common people; is for deciding their precious vote, to which party to give will be good for themselves and nation too. For politicians; they will have an idea about themselves i.e. after seeking the polarities of different parties, the politicians will have an idea which party is preferable and which is not preferable, so that the politicians can work accordingly. The system shows comparison among VADER and SVM algorithm; and SVM algorithm showed 90% accuracy.
ISSN:2277-3878
2277-3878
DOI:10.35940/ijrte.B3997.079220