An Efficient Methodology for Object Classification using Light Weight Deep Convolutional Neural Networks

In current era, deep convolution neural networks (DCNNs) have good break-through in processing images while reducing computational cost and increasing accuracy. Proposed approach focuses on object detection using classification with DCNN model. This model uses feature map for pre-processing the imag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of recent technology and engineering 2019-07, Vol.9 (2), p.5965-5968
Hauptverfasser: B, Anjanadevi, Bhavanam, Dr. S Nagakishore, Reddy, Dr. E Srinivasa
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In current era, deep convolution neural networks (DCNNs) have good break-through in processing images while reducing computational cost and increasing accuracy. Proposed approach focuses on object detection using classification with DCNN model. This model uses feature map for pre-processing the images and convolution layers helps to minimize the processing using deep learning perceptron’s. After that the proposed approach uses Light – Weight Deep Convolution Neural Network(LW_DCNN) Model which includes less number of convolution layers, Max Pooling layers with relevant parameters and Dense, flatten layers to train the data using Leaky ReLU function for improving accuracy. The proposed methodology LW_DCNN is highly efficient compared to traditional classification techniques and presenting simple and powerful model for object detection in Video Surveillance Systems. This model also tested on GPU systems and proved efficiency in less computational time. Obtained Results are clearly shows that model is more efficient in classifying the objects intern classifying the working condition of the overhead power polls insulators in real time video frame sequences.
ISSN:2277-3878
2277-3878
DOI:10.35940/ijrte.B3608.078219