Helpfulness Prediction of Product Assessments using Machine Learning
Paper Customers express their opinion on products through reviews. Since there will be a lot of reviews that will be posted, only those reviews which are helpful should be made accessible to the customer. Hence, helpfulness of review needs to be predicted. This work categorizes the features into rev...
Gespeichert in:
Veröffentlicht in: | International journal of recent technology and engineering 2019-09, Vol.8 (2S7), p.369-376 |
---|---|
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Paper Customers express their opinion on products through reviews. Since there will be a lot of reviews that will be posted, only those reviews which are helpful should be made accessible to the customer. Hence, helpfulness of review needs to be predicted. This work categorizes the features into reviewer, review text and review metadata. Machine Learning algorithms Linear Regression and Random Forests are used for prediction of helpfulness using these features. It is observed that rating of a review has the highest influence on predicting helpfulness followed by user average rating deviation, difficult words and positive words. This work defines the features such as stem sim length and lem sim length which are derived from the product description which have performed reasonably well. Using all the features with Random Forests algorithm for prediction gave the best performance in automatically predicting helpfulness. |
---|---|
ISSN: | 2277-3878 2277-3878 |
DOI: | 10.35940/ijrte.B1068.0782S719 |