Web Document Classification Using Fuzzy K-Nearest Neighbor

With surge in the number of documents across the internet, increasing the efficiency of any retrieval model is a challenging task. As non-relevant information is retrieved across the internet, increasing the accuracy of any search model is one of the research concerns. Fuzzy classification is broadl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of innovative technology and exploring engineering 2019-09, Vol.8 (11), p.471-474
Hauptverfasser: Qazi, Aijazahamed, Goudar, Dr.R.H., Hiremath, Dr.P.S.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With surge in the number of documents across the internet, increasing the efficiency of any retrieval model is a challenging task. As non-relevant information is retrieved across the internet, increasing the accuracy of any search model is one of the research concerns. Fuzzy classification is broadly applied to address the search issue in search engines. Fuzzy logic provides a methodology to interpret natural language using membership functions. A variant of k-Nearest Neighbor (kNN) called Fuzzy kNN is explored in this paper. This paper provides a comparative analysis of results obtained using kNN and Fuzzy kNN. The Fuzzy kNN results obtained show significant improvement.
ISSN:2278-3075
2278-3075
DOI:10.35940/ijitee.K1407.0981119