A Web Based MATLAB Solution for Classifying Micro-Calcification on Mammograms

In the aeon of deep learning, CNN outperform significant part in medical image analysis. CADx(“Computer Aided Detection and Diagnosis “) for Mammography utilizes significant features to detect and diagnose breast malignancy. Now a day CNNs based CADx are worth popular due to automatic relevant featu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of innovative technology and exploring engineering 2020-02, Vol.4 (9), p.2439-2446
Hauptverfasser: Sharma, Karuna, Mukherjee, Saurabh
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the aeon of deep learning, CNN outperform significant part in medical image analysis. CADx(“Computer Aided Detection and Diagnosis “) for Mammography utilizes significant features to detect and diagnose breast malignancy. Now a day CNNs based CADx are worth popular due to automatic relevant features extraction. CNNs can be trained from ground up for medical images but due to finite number of medical images transfer learning and data augmentations are used for training. And also performance of CADx can be decreased due to some factors like appearance of noise, artifacts, low contrast in both CC and MLO views of Mammogram and pectoral muscles which appears in MLO view of Mammogram. Mammograms can contain different types of abnormality like Micro-Calcification, Masses, Architectural distortion in case of breast cancer. In this work we developed a Web Based MATLAB Solution for the classification of Micro-Calcification malignancy either benign or malignant. This web based solution performs different steps to remove artifact, to enhance contrast, to segment pectoral muscle and to extract breast profile. At the final step proposed system classify mammograms either into benign or malignant. It has been examined on mammographic images containing both views from CBIS-DDSM database.
ISSN:2278-3075
2278-3075
DOI:10.35940/ijitee.D2108.029420