Development of binary eutectic organic phase change materials for solar thermal energy storage systems

Solar thermal energy storage unit anchored fatty acids as Phase Change Materials (PCMs) having narrow range of transition temperature and high latent heat of fusion. In this paper, a new novel eutectic PCM was developed by using a fatty acid (acetamide) and non-paraffin organic PCM (acetanilide) for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of innovative technology and exploring engineering 2019-12, Vol.9 (2), p.2207-2210
Hauptverfasser: Gupta, Anuradha, Kushwah, Kamal K., Mahobia, Sujeet K., Murty, V.V.S.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Solar thermal energy storage unit anchored fatty acids as Phase Change Materials (PCMs) having narrow range of transition temperature and high latent heat of fusion. In this paper, a new novel eutectic PCM was developed by using a fatty acid (acetamide) and non-paraffin organic PCM (acetanilide) for a sharp melting point and high latent heat of fusion. The optimized eutectic PCM may be used for middle temperature range solar thermal energy storage systems. The binary mixture of acetamide and acetanilide at various compositions by mass ratio (wt%) was prepared and optimized experimentally for lowest value of melting point at a eutectic mixture composition of 60 wt% of acetamide and 40 wt% of acetanilide. Eutectic PCM was analyzed by Differential Scanning Calorimetry (DSC) and Field-Emission Scanning Electron Microscopy (FE-SEM). DSC results revealed that optimized eutectic PCM has a sharp melting point of 65.37°C and high latent heat of fusion of 224.67 kJ/kg. Accelerated thermal cycle testing of optimized eutectic PCM was performed for 100 melting and freezing cycles and change in melting temperature and latent heat of fusion was acceptable.
ISSN:2278-3075
2278-3075
DOI:10.35940/ijitee.B7570.129219