Convolutional Neural Network Based Approach to Detect Pedestrians in Real-Time videos

Pedestrians in the vehicle way are in peril of being hit, along these lines making extreme damage walkers and vehicle inhabitants. Hence, constant person on foot identification was done through a set of recorded videos and the system detects the persons/pedestrians in the given input videos. In this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of innovative technology and exploring engineering 2020-11, Vol.10 (1), p.303-308
Hauptverfasser: N, Sandhya, Marathe, Anirudh, Ahmed, JS Dawood, Kumar, Aman, R., Harshith
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pedestrians in the vehicle way are in peril of being hit, along these lines making extreme damage walkers and vehicle inhabitants. Hence, constant person on foot identification was done through a set of recorded videos and the system detects the persons/pedestrians in the given input videos. In this survey, a continuous plan was proposed dependent on Aggregated Channel Features (ACF) and CPU. The proposed technique doesn’t have to resize the information picture neither the video quality. We also use SVM with HOG and SVM with HAAR to detect the pedestrians. In addition, the Convolutional Neural Networks (CNN) were trained with a set of pedestrian images datasets and later tested on some test-set of pedestrian images. The analyses demonstrated that the proposed technique could be utilized to distinguish people on foot in the video with satisfactory mistake rates and high prediction accuracy. In this manner, it tends to be applied progressively for any real-time streaming of videos and also for prediction of pedestrians in pre-recorded videos.
ISSN:2278-3075
2278-3075
DOI:10.35940/ijitee.A8137.1110120