Comparing mechanism response and thermal conductivity of Ti 3 C 2 and Ti 3 C 2 O 2

This study uses molecular dynamics to investigate the effect of various temperatures and sample sizes on the mechanical mechanism and thermal conductivity of Ti 3 C 2 and Ti 3 C 2 O 2 Mxenes. The size of the Mxenes decides the severity of the crack and the von Mises stress clustering. The elastic ph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japanese Journal of Applied Physics 2024-04, Vol.63 (4), p.45001
Hauptverfasser: Tseng, Po-Han, Bui, Thi-Xuyen, Lai, Tang-Yu, Lu, Yu-Sheng, Lai, Yu-Hsun, Lin, Ming-Hong, Fang, Te-Hua
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study uses molecular dynamics to investigate the effect of various temperatures and sample sizes on the mechanical mechanism and thermal conductivity of Ti 3 C 2 and Ti 3 C 2 O 2 Mxenes. The size of the Mxenes decides the severity of the crack and the von Mises stress clustering. The elastic phase trend of Ti 3 C 2 materials in different sizes follows Hooke’s law, while the complex elastic trend is for the Ti 3 C 2 O 2 models. The material toughness of Ti 3 C 2 is relatively high, and the material’s response to the force is relatively stable and linear during the process of being subjected to pressure. The Ti 3 C 2 O 2 Mxene presents a low toughness, low stability, and easier breakage during stress due to the complex structure and the formation of anatase and rutile TiO 2 phases. The thermal conductivity decreases when the temperature increases or the material sizes decrease for both materials. Notably, Ti 3 C 2 shows superior thermal conductivity in comparison to the Ti 3 C 2 O 2 Mxene.
ISSN:0021-4922
1347-4065
DOI:10.35848/1347-4065/ad33f3