Visualizing polymeric liquid/solid interfaces by atomic force microscopy utilizing quartz tuning fork sensors
We investigated a polymeric liquid/solid interface by frequency modulation atomic force microscopy (FM-AFM) using a quartz tuning fork sensor, so-called qPlus sensor. We carried out topographic imaging on a muscovite mica surface in poly(dimethylsiloxane) (PDMS) which has 1000 times higher viscosity...
Gespeichert in:
Veröffentlicht in: | Japanese Journal of Applied Physics 2020-08, Vol.59 (SN), p.SN1009 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigated a polymeric liquid/solid interface by frequency modulation atomic force microscopy (FM-AFM) using a quartz tuning fork sensor, so-called qPlus sensor. We carried out topographic imaging on a muscovite mica surface in poly(dimethylsiloxane) (PDMS) which has 1000 times higher viscosity than that of water and the crystal structure of the mica surface was successfully imaged. Two-dimensional frequency shift mapping was also demonstrated at the interface and the layered structure of density distribution of the PDMS was imaged. The monotonic energy dissipation curve indicated the fluid-like behavior of the PDMS near the mica surface. In addition, lateral variation of density distribution was also imaged. The results in this work indicated usefulness of FM-AFM using qPlus sensors for lubrication study. |
---|---|
ISSN: | 0021-4922 1347-4065 |
DOI: | 10.35848/1347-4065/ab84b0 |