On the convergence of the barycentric method in solving internal Dirichlet and Neumann problems in $\mathbb{R}^2$ for the Helmholtz equation

The application of the barycentric method for the numerical solution of Dirichlet and Neumann problems for the Helmholtz equation in the bounded simply connected domain $\Omega\subset\mathbb{R}^2$ is considered. The main assumption in the solution is to set the $\Omega$ boundary in a piecewise linea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vestnik Udmurtskogo universiteta. Matematika, mekhanika, kompʹi͡u︡ternye nauki mekhanika, kompʹi͡u︡ternye nauki, 2021-03, Vol.31 (1), p.3-18
Hauptverfasser: Il'inskii, A.S., Polyanskii, I.S., Stepanov, D.E.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The application of the barycentric method for the numerical solution of Dirichlet and Neumann problems for the Helmholtz equation in the bounded simply connected domain $\Omega\subset\mathbb{R}^2$ is considered. The main assumption in the solution is to set the $\Omega$ boundary in a piecewise linear representation. A distinctive feature of the barycentric method is the order of formation of a global system of vector basis functions for $\Omega$ via barycentric coordinates. The existence and uniqueness of the solution of Dirichlet and Neumann problems for the Helmholtz equation by the barycentric method are established and the convergence rate estimate is determined. The features of the algorithmic implementation of the method are clarified.
ISSN:1994-9197
2076-5959
DOI:10.35634/vm210101