PARAMETER CALIBRATION FOR THE DISCRETE ELEMENT SIMULATION OF TIRE-SOIL INTERACTION
To carry out simulation research on tire-soil interaction, EDEM software was used to calibrate the test soil and the contact parameters between the tire and soil. The soil contact model was the Edinburgh Elasto-Plastic Adhesion (EEPA) model. Using the soil repose angle as the repose value, the conta...
Gespeichert in:
Veröffentlicht in: | INMATEH - Agricultural Engineering 2023-04, p.693-702 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To carry out simulation research on tire-soil interaction, EDEM software was used to calibrate the test soil and the contact parameters between the tire and soil. The soil contact model was the Edinburgh Elasto-Plastic Adhesion (EEPA) model. Using the soil repose angle as the repose value, the contact plasticity ratio, the soil-soil rolling friction coefficient, and the tensile exponential (Tensile exp) were respectively calculated using the Plackett-Burman test, the steepest climbing test, and the Box-Behnken test, and the optimal combination of parameters was found to be E = 0.08, B = 0.1, and F = 4.8. The values of the remaining parameters were as follows: a soil-soil static friction coefficient of 0.45, a restitution coefficient of 0.5, a surface energy of 4, and a tangential stiffness multiplier of 0.35. Based on the slope sliding method, the coefficient of static friction between soil and rubber was calculated as 0.88. On this basis, a central combination test was designed to calibrate the rubber-soil rolling friction coefficient and coefficient of restitution, the optimal combination of which was found to be H = 0.18 and I = 0.55. A soil tank model was created using the optimal parameters, and the correctness of the established soil discrete element model and rubber-soil contact parameters was validated by comparing the simulation results and the results of an experiment of the tire driving process. |
---|---|
ISSN: | 2068-4215 2068-2239 |
DOI: | 10.35633/inmateh-69-67 |