Zynq FPGA-Based Acceleration of Kernelized Correlation Filters via High-Level Synthesis of a Custom DFT Block

This study presents a hardware-software co-design implementation of an accelerator for the Kernelized Correlation Filter (KCF) tracking algorithm. Leveraging the High-level synthesis (HLS) and the Zynq heterogeneous platform, the KCF algorithm’s performance is enhanced by using a custom hardware imp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sakarya university journal of computer and information sciences 2024-04, Vol.7 (1), p.11-21
Hauptverfasser: Yetiş, Mustafa, Çavuş, Enver
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study presents a hardware-software co-design implementation of an accelerator for the Kernelized Correlation Filter (KCF) tracking algorithm. Leveraging the High-level synthesis (HLS) and the Zynq heterogeneous platform, the KCF algorithm’s performance is enhanced by using a custom hardware implementation for the computationally intensive Discrete Fourier Transform (DFT) operation. Within this framework, a custom combined DFT and inverse DFT IP, named CDFT, is developed and optimized on the Programmable Logic (PL) side of the Xilinx ZCU102 FPGA, whereas the rest of the KCF algorithm is run with customized Petalinux build on the (Processing System) side. To assess real-world performance, a driver for the CDFT IP and a user application were created to measure metrics like Center Location Error (CLE), Intersection over Union (IoU), and Frame per Second (FPS). The designed DFT accelerator achieves a remarkable speedup of 21x compared to a software DFT implementation. At the algorithm level, the KCF accelerator obtains a 6x speed up with negligible precision loss. In comparison to prior studies employing exclusively hardware implementations, the proposed approach demonstrates a high accuracy at a moderate speed, while there exists potential for further optimizations to enhance its performance even further.
ISSN:2636-8129
2636-8129
DOI:10.35377/saucis...1402561