Selection of an algorithm for classifying data quoted on the Day Ahead Market of TGE S.A. in MATLAB and Simulink using Deep Learning Toolbox

The article contains an analysis leading to the selection of an algorithm for classifying data listed on the Day-Ahead Market of TGE S.A. in MATLAB and Simulink using Deep Learning Toolbox. In this regard, an introduction to deep learning methods, classification methods, and classification algorithm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Studia Informatica. System and information technology 2023-12, Vol.28 (1), p.83-108
Hauptverfasser: Tchórzewski, Jerzy, Mielcarz, Tomasz
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The article contains an analysis leading to the selection of an algorithm for classifying data listed on the Day-Ahead Market of TGE S.A. in MATLAB and Simulink using Deep Learning Toolbox. In this regard, an introduction to deep learning methods, classification methods, and classification algorithms is provided first. Particular attention was paid to the essence of three important deep learningmethods in the classification, i.e. the methods called: Stochastic Gradient Descent Momentum, Root Mean Square Prop and Adaptive Moment Estimation. Then, three architectures of artificial neural networks used in deep learning were characterized, i.e.: Deep Belief Network, Convolutional Neural Network and Recurrent Neural Network. Attention was paid to the selection parameters of algorithms for learning deep artificial neural networks that can be used in classification, such as: accuracy, information losses and learning time. Practical aspects of research experiments were also shown, including selected results of research conducted on volume and fixing 1 data quoted on the TGE S.A. Day-Ahead Market. After analyzing the obtained test results for the hourly system, it was noted that the least suitable algorithm for classification purposes was the Stochastic Gradient Descent Momentum algorithm, which in each case had worse results than the other two algorithms, i.e. the Adaptive Moment Estimation algorithm and the Root Mean algorithm Square Prop. However, the best algorithm turned out to be the Adaptive Moment Estimation algorithm, which obtained the highest accuracy, which was at a level comparable to the Root Mean Square Prop algorithm, with the latter algorithm having larger losses.
ISSN:1731-2264
DOI:10.34739/si.2023.28.05