Results of Semigroup of Linear Operators Generating a Regular Weak-continuous Semigroup
This paper present results of $\omega$-order preserving partial contraction mapping generating a regular weak*-continuous semigroup. We consider a semigroup on a Banach space $X$ and $B:X^\odot\rightarrow X^*$ is bounded, then the intertwining formula was used to define a semigroup $T^B(t)$ on $X^*$...
Gespeichert in:
Veröffentlicht in: | Earthline Journal of Mathematical Sciences 2022-07, p.289-304 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper present results of $\omega$-order preserving partial contraction mapping generating a regular weak*-continuous semigroup. We consider a semigroup on a Banach space $X$ and $B:X^\odot\rightarrow X^*$ is bounded, then the intertwining formula was used to define a semigroup $T^B(t)$ on $X^*$ which extends the perturbed semigroup $T^B_0(t)$ on $X^\odot$ using the variation of constants formula. We also investigated a certain class of weak*-continuous semigroups on dual space $X^*$ which contains both adjoint semigroups and their perturbations by operators $B:X^\odot\rightarrow X^*$. |
---|---|
ISSN: | 2581-8147 2581-8147 |
DOI: | 10.34198/ejms.10222.289304 |