Some Formability Aspects of High Strength Steel and of Consisting Tailor Welded Blanks
In recent years, the demand for a reduction in pollutant emission has become extremely important in the vehicle industry. It can be achieved through fuel consumption reduction, which is a direct function of the vehicle’s weight. nowadays weight is widely controlled by the use of advanced- and ultra-...
Gespeichert in:
Veröffentlicht in: | Acta materialia transylvanica 2021-04, Vol.4 (1), p.18-23 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In recent years, the demand for a reduction in pollutant emission has become extremely important in the vehicle industry. It can be achieved through fuel consumption reduction, which is a direct function of the vehicle’s weight. nowadays weight is widely controlled by the use of advanced- and ultra-high strength steels (AHSS and UHSS) in vehicle body construction. With the application of such steel sheets as chassis elements, crashworthiness can be maintained next to reduced sheet thicknesses, too. In this paper, the deep-drawability and springback after V-die bending is monitored for three types of AHSS grades, namely DP600, DP800 and DP1000 materials. The investigations are extended to tailor welded blanks (TWBs), made by the aforementioned steels coupled with a cold rolled steel sheet (DC04). Our results show that deep-drawability reduces with both the increase in strength and the increase in strength difference between the components in the TWBs. Furthermore, the higher strength is shown to cause higher spring-back. The TWBs have unique spring-back behavior around the weld line. |
---|---|
ISSN: | 2601-8799 2601-8799 |
DOI: | 10.33924/amt-2021-01-03 |