Assessing the Ecotoxicity of Copper and Polycyclic Aromatic Hydrocarbons: Comparison of Effects on Paracentrotus lividus and Botryllus schlosseri, as Alternative Bioassay Methods

Adult sea urchins and their embryos are ideal targets to investigate the medium- and long-term effects of various toxic agents, such as organic and inorganic pollutants, to forecast and mitigate their environmental effects. Similarly, small colonial tunicates such as Botryllid ascidians may reveal a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2021-03, Vol.13 (5), p.711
Hauptverfasser: Gregorin, Chiara, Albarano, Luisa, Somma, Emanuele, Costantini, Maria, Zupo, Valerio
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Adult sea urchins and their embryos are ideal targets to investigate the medium- and long-term effects of various toxic agents, such as organic and inorganic pollutants, to forecast and mitigate their environmental effects. Similarly, small colonial tunicates such as Botryllid ascidians may reveal acute toxicity processes and permit quick responses for the management of contaminants impacting coastal waters, to preserve the functional integrity of marine ecosystems. This investigation compares the functional responses of two model invertebrates, the sea urchin Paracentrotus lividus and the sea squirt Botryllus schlosseri, to chronic and acute exposures to organic and inorganic toxic agents. Such heavy metals as copper produce both acute and chronic effects on marine biota, while polycyclic aromatic hydrocarbons (PAHs) mainly produce chronic effects at the concentrations ordinarily measured in marine coastal waters. Both models were tested over a range of concentrations of copper and PAHs. Copper triggered a clear effect in both species, producing a delay in the embryo development of P. lividus and a rapid death of sea squirts. B. schlosseri was less sensitive to PAHs than P. lividus. The results on both species may synergistically contribute to assess the toxicity of organic and inorganic compounds at various concentrations and different physiologic levels.
ISSN:2073-4441
2073-4441
DOI:10.3390/w13050711