A Study on Dust Storm Pollution and Source Identification in Northwestern China

In April 2023, a major dust storm event in Lanzhou attracted widespread attention. This study provides a comprehensive analysis of the causes, progression, and dust sources of this event using multiple data sources and methods. Backward trajectory analysis using the HYSPLIT model was employed to tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Toxics (Basel) 2025-01, Vol.13 (1), p.33
Hauptverfasser: Meng, Hongfei, Wang, Feiteng, Bai, Guangzu, Li, Huilin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In April 2023, a major dust storm event in Lanzhou attracted widespread attention. This study provides a comprehensive analysis of the causes, progression, and dust sources of this event using multiple data sources and methods. Backward trajectory analysis using the HYSPLIT model was employed to trace the origins of the dust, while FY-2H satellite data provided high-resolution dust distribution patterns. Additionally, the MAIAC AOD product was used to analyze Aerosol Optical Depth, and concentration-weighted trajectory (CWT) analysis was used to identify key dust source regions. The study found that PM10 played a dominant role in the storm, and the AOD values during the storm in Lanzhou were significantly higher than the annual average, highlighting the severe impact on regional air quality. Key meteorological conditions influencing the storm’s occurrence were analyzed, including the formation and eastward movement of a high-potential ridge, convection driven by diurnal temperature variations, and surface temperature increases coupled with decreased relative humidity, which together promoted the generation and development of dust. Backward trajectory and dust distribution analyses revealed that the dust primarily originated from Central Asia, western Mongolia, Xinjiang, and Gansu. From the 19th to the 21st, the dust distribution showed similarities between day and night, with a noticeable increase in dust concentration from night to day due to strong vertical atmospheric mixing. To mitigate the impacts of future dust storms, this study highlights both short-term and long-term strategies, including enhanced monitoring systems, public health advisories, and vegetation restoration in key source regions. Strengthening regional and international cooperation for transboundary dust management is also emphasized as critical for sustainable mitigation efforts. These findings are significant for understanding and predicting the causes, characteristics, and environmental impacts of dust storms in Lanzhou and the Northwestern region.
ISSN:2305-6304
2305-6304
DOI:10.3390/toxics13010033