Rub-Impact Dynamics of Shrouded Blades under Bending-Torsion Coupling Vibration

Shroud devices which are typical cyclic symmetric structures are widely used to reduce the vibration of turbine blades in aero engines. Asymmetric rub-impact of adjacent shrouds or aerodynamic excitation forces can excite the bending-torsion coupling vibration of shrouded blades, which will lead to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2021-06, Vol.13 (6), p.1073, Article 1073
Hauptverfasser: He, Shangwen, Si, Kunli, He, Bingbing, Yang, Zhaorui, Wang, Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Shroud devices which are typical cyclic symmetric structures are widely used to reduce the vibration of turbine blades in aero engines. Asymmetric rub-impact of adjacent shrouds or aerodynamic excitation forces can excite the bending-torsion coupling vibration of shrouded blades, which will lead to complex contact motions. The aim of this paper is to study the rub-impact dynamic characteristics of bending-torsion coupling vibration of shrouded blades using a numerical method. The contact-separation transition mechanism under complex motions is studied, the corresponding boundary conditions are set up, and the influence of moments of contact forces and aerodynamic excitation forces on the motion of the blade is considered. A three-degree-of-freedom mass-spring model including two mass blocks with the same size and shape is established to simulate the bending-torsion coupling vibration, and the dynamic equations of shrouded blades under different contact conditions are derived. An algorithm based on the fourth-order Runge-Kutta method is presented for simulations. Variation laws of the forced response characteristics of shrouded blades under different parameters are studied, on the basis of which the method to evaluate the vibration reduction characteristics of the shrouded blade system when the motion of the blade is chaotic is discussed. Then, the vibration reduction law of shrouded blades under bending-torsion coupling vibration is obtained.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym13061073