A Comparison of Complete Parts on m-Idempotent Hyperrings
On a particular class of m-idempotent hyperrings, the relation ξ m * is the smallest strongly regular equivalence such that the related quotient ring is commutative. Thus, on such hyperrings, ξ m * is a new representation for the α * -relation. In this paper, the ξ m -parts on hyperrings are defined...
Gespeichert in:
Veröffentlicht in: | Symmetry (Basel) 2020-04, Vol.12 (4), p.554 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | On a particular class of m-idempotent hyperrings, the relation ξ m * is the smallest strongly regular equivalence such that the related quotient ring is commutative. Thus, on such hyperrings, ξ m * is a new representation for the α * -relation. In this paper, the ξ m -parts on hyperrings are defined and compared with complete parts, α -parts, and m-complete parts, as generalizations of complete parts in hyperrings. It is also shown how the ξ m -parts help us to study the transitivity property of the ξ m -relation. Finally, ξ m -complete hyperrings are introduced and studied, stressing on the fact that they can be characterized by ξ m -parts. The symmetry plays a fundamental role in this study, since the protagonist is an equivalence relation, defined using also the symmetrical group of permutations of order n. |
---|---|
ISSN: | 2073-8994 2073-8994 |
DOI: | 10.3390/sym12040554 |