Bioremediation Potential of Sunflower-Derived Biosurfactants: A Bibliometric Description

Biosurfactants are amphiphilic molecules capable of reducing the surface tension of water and forming emulsions between immiscible liquids. These versatile molecules find applications in different industrial sectors, standing out in environmental applications, such as the bioremediation agents of co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2025-01, Vol.17 (1), p.330
Hauptverfasser: Passos, Wesley Araújo, Jesus, Meirielly, Mata, Fernando, Menezes, Millena Souza, dos Santos, Pablo Omar Lubarino, Santos, Brenda Lohanny P., Santana, Hortência E. P., Ruzene, Denise Santos, Silva, Daniel Pereira
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biosurfactants are amphiphilic molecules capable of reducing the surface tension of water and forming emulsions between immiscible liquids. These versatile molecules find applications in different industrial sectors, standing out in environmental applications, such as the bioremediation agents of contaminated environments. Bioremediation is an emerging sustainable method of controlling the degradation of waste. The present study carried out a bibliometric analysis, reviewing all research published in the SCOPUS database up to 2023, focused on producing biosurfactants from sunflowers with applications in this sustainable method of waste degradation. Using sunflowers to produce biosurfactants proved an ecological, sustainable, and economical alternative to conventional substrates. The results showed that only the seed husks, the oil derived from the seed, and the sunflower stems were used to produce biosurfactants, emphasizing oil as the most used raw material, probably due to its rich linoleic acid content. The preliminary selection detected only 12 articles that addressed the subject under analysis. According to these studies, the tested biosurfactants showed high potential for application in sustainable environmental bioremediation processes and were able to decontaminate soil, water, and liquid effluents. The bibliometric analysis was performed with the VOSviewer software to evaluate the quality of the publications and, above all, to show a more comprehensive scenario of the subject based on the following bibliometric indicators: the most productive journals, publications by country, the most cited articles, the most recurrent keywords, and most productive institutions. These insights will undoubtedly help scientists to develop new and sustainable practices of waste degradation and contribute to bioremediation research using biosurfactants from sunflowers. By showcasing the environmental benefits and practicality of sunflower-derived biosurfactants, this study contributes to the broader discourse on sustainable bioremediation, fostering innovative and eco-friendly waste management solutions.
ISSN:2071-1050
2071-1050
DOI:10.3390/su17010330