Shared Automated Mobility with Demand-Side Cooperation: A Proof-of-Concept Microsimulation Study
Most existing shared automated mobility (SAM) services assume the door-to-door manner, i.e., the pickup and drop-off (PUDO) locations are the places requested by the customers (or demand-side). While some mobility services offer more affordable riding costs in exchange for a little walking effort fr...
Gespeichert in:
Veröffentlicht in: | Sustainability 2021-03, Vol.13 (5), p.2483 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Most existing shared automated mobility (SAM) services assume the door-to-door manner, i.e., the pickup and drop-off (PUDO) locations are the places requested by the customers (or demand-side). While some mobility services offer more affordable riding costs in exchange for a little walking effort from customers, their rationales and induced impacts (in terms of mobility and sustainability) from the system perspective are not clear. This study proposes a demand-side cooperative shared automated mobility (DC-SAM) service framework, aiming to fill this knowledge gap and to assess the mobility and sustainability impacts. The optimal ride matching problem is formulated and solved in an online manner through a micro-simulation model, Simulation of Urban Mobility (SUMO). The objective is to maximize the profit (considering both the revenue and cost) of the proposed SAM service, considering the constraints in seat capacities of shared automated vehicles (SAVs) and comfortable walking distance from the perspective of customers. A case study on a portion of a New York City (NYC) network with a pre-defined fleet size demonstrated the efficacy and promise of the proposed system. The results show that the proposed DC-SAM service can not only significantly reduce the SAV’s operating costs in terms of vehicle-miles traveled (VMT), vehicle-hours traveled (VHT), and vehicle energy consumption (VEC) by up to 53, 46 and 51%, respectively, but can also considerably improve the customer service by 30 and 56%, with regard to customer waiting time (CWT) and trip detour factor (TDF), compared to a heuristic service model. In addition, the demand-side cooperation strategy can bring about additional system-wide mobility and sustainability benefits in the range of 4–10%. |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su13052483 |