INARMA Modeling of Count Time Series

While most of the literature about INARMA models (integer-valued autoregressive moving-average) concentrates on the purely autoregressive INAR models, we consider INARMA models that also include a moving-average part. We study moment properties and show how to efficiently implement maximum likelihoo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stats (Basel, Switzerland) Switzerland), 2019-06, Vol.2 (2), p.284-320
Hauptverfasser: Weiß, Christian H., Feld, Martin H.-J. M., Mamode Khan, Naushad, Sunecher, Yuvraj
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 320
container_issue 2
container_start_page 284
container_title Stats (Basel, Switzerland)
container_volume 2
creator Weiß, Christian H.
Feld, Martin H.-J. M.
Mamode Khan, Naushad
Sunecher, Yuvraj
description While most of the literature about INARMA models (integer-valued autoregressive moving-average) concentrates on the purely autoregressive INAR models, we consider INARMA models that also include a moving-average part. We study moment properties and show how to efficiently implement maximum likelihood estimation. We analyze the estimation performance and consider the topic of model selection. We also analyze the consequences of choosing an inadequate model for the given count process. Two real-data examples are presented for illustration.
doi_str_mv 10.3390/stats2020022
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_3390_stats2020022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3390_stats2020022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c203t-96eb067cc74a421bad244f4d6d9512e51a2d4bb52d676f18b54aeb6cbc9eeeab3</originalsourceid><addsrcrecordid>eNpNjztLA0EURgdRMMR0_oApLF29c-eVKZfFRyBRSCLYLfO4KytJVmbWwn-vokWq8xWHDw5jlwJupHRwW0Y_FgQEQDxhE9RWVA706-nRPmezUt7hR7HGqbmasKvFU71e1Xw1JNr1hzc-dLwZPg8j3_Z74hvKPZULdtb5XaHZP6fs5f5u2zxWy-eHRVMvq4ggx8oZCmBsjFZ5hSL4hEp1KpnktEDSwmNSIWhMxppOzINWnoKJIToi8kFO2fXfb8xDKZm69iP3e5-_WgHtb2R7HCm_AW9ORHo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>INARMA Modeling of Count Time Series</title><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Weiß, Christian H. ; Feld, Martin H.-J. M. ; Mamode Khan, Naushad ; Sunecher, Yuvraj</creator><creatorcontrib>Weiß, Christian H. ; Feld, Martin H.-J. M. ; Mamode Khan, Naushad ; Sunecher, Yuvraj</creatorcontrib><description>While most of the literature about INARMA models (integer-valued autoregressive moving-average) concentrates on the purely autoregressive INAR models, we consider INARMA models that also include a moving-average part. We study moment properties and show how to efficiently implement maximum likelihood estimation. We analyze the estimation performance and consider the topic of model selection. We also analyze the consequences of choosing an inadequate model for the given count process. Two real-data examples are presented for illustration.</description><identifier>ISSN: 2571-905X</identifier><identifier>EISSN: 2571-905X</identifier><identifier>DOI: 10.3390/stats2020022</identifier><language>eng</language><ispartof>Stats (Basel, Switzerland), 2019-06, Vol.2 (2), p.284-320</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c203t-96eb067cc74a421bad244f4d6d9512e51a2d4bb52d676f18b54aeb6cbc9eeeab3</citedby><cites>FETCH-LOGICAL-c203t-96eb067cc74a421bad244f4d6d9512e51a2d4bb52d676f18b54aeb6cbc9eeeab3</cites><orcidid>0000-0001-8739-6631</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Weiß, Christian H.</creatorcontrib><creatorcontrib>Feld, Martin H.-J. M.</creatorcontrib><creatorcontrib>Mamode Khan, Naushad</creatorcontrib><creatorcontrib>Sunecher, Yuvraj</creatorcontrib><title>INARMA Modeling of Count Time Series</title><title>Stats (Basel, Switzerland)</title><description>While most of the literature about INARMA models (integer-valued autoregressive moving-average) concentrates on the purely autoregressive INAR models, we consider INARMA models that also include a moving-average part. We study moment properties and show how to efficiently implement maximum likelihood estimation. We analyze the estimation performance and consider the topic of model selection. We also analyze the consequences of choosing an inadequate model for the given count process. Two real-data examples are presented for illustration.</description><issn>2571-905X</issn><issn>2571-905X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNjztLA0EURgdRMMR0_oApLF29c-eVKZfFRyBRSCLYLfO4KytJVmbWwn-vokWq8xWHDw5jlwJupHRwW0Y_FgQEQDxhE9RWVA706-nRPmezUt7hR7HGqbmasKvFU71e1Xw1JNr1hzc-dLwZPg8j3_Z74hvKPZULdtb5XaHZP6fs5f5u2zxWy-eHRVMvq4ggx8oZCmBsjFZ5hSL4hEp1KpnktEDSwmNSIWhMxppOzINWnoKJIToi8kFO2fXfb8xDKZm69iP3e5-_WgHtb2R7HCm_AW9ORHo</recordid><startdate>20190603</startdate><enddate>20190603</enddate><creator>Weiß, Christian H.</creator><creator>Feld, Martin H.-J. M.</creator><creator>Mamode Khan, Naushad</creator><creator>Sunecher, Yuvraj</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8739-6631</orcidid></search><sort><creationdate>20190603</creationdate><title>INARMA Modeling of Count Time Series</title><author>Weiß, Christian H. ; Feld, Martin H.-J. M. ; Mamode Khan, Naushad ; Sunecher, Yuvraj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c203t-96eb067cc74a421bad244f4d6d9512e51a2d4bb52d676f18b54aeb6cbc9eeeab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weiß, Christian H.</creatorcontrib><creatorcontrib>Feld, Martin H.-J. M.</creatorcontrib><creatorcontrib>Mamode Khan, Naushad</creatorcontrib><creatorcontrib>Sunecher, Yuvraj</creatorcontrib><collection>CrossRef</collection><jtitle>Stats (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weiß, Christian H.</au><au>Feld, Martin H.-J. M.</au><au>Mamode Khan, Naushad</au><au>Sunecher, Yuvraj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>INARMA Modeling of Count Time Series</atitle><jtitle>Stats (Basel, Switzerland)</jtitle><date>2019-06-03</date><risdate>2019</risdate><volume>2</volume><issue>2</issue><spage>284</spage><epage>320</epage><pages>284-320</pages><issn>2571-905X</issn><eissn>2571-905X</eissn><abstract>While most of the literature about INARMA models (integer-valued autoregressive moving-average) concentrates on the purely autoregressive INAR models, we consider INARMA models that also include a moving-average part. We study moment properties and show how to efficiently implement maximum likelihood estimation. We analyze the estimation performance and consider the topic of model selection. We also analyze the consequences of choosing an inadequate model for the given count process. Two real-data examples are presented for illustration.</abstract><doi>10.3390/stats2020022</doi><tpages>37</tpages><orcidid>https://orcid.org/0000-0001-8739-6631</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2571-905X
ispartof Stats (Basel, Switzerland), 2019-06, Vol.2 (2), p.284-320
issn 2571-905X
2571-905X
language eng
recordid cdi_crossref_primary_10_3390_stats2020022
source DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
title INARMA Modeling of Count Time Series
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A08%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=INARMA%20Modeling%20of%20Count%20Time%20Series&rft.jtitle=Stats%20(Basel,%20Switzerland)&rft.au=Wei%C3%9F,%20Christian%20H.&rft.date=2019-06-03&rft.volume=2&rft.issue=2&rft.spage=284&rft.epage=320&rft.pages=284-320&rft.issn=2571-905X&rft.eissn=2571-905X&rft_id=info:doi/10.3390/stats2020022&rft_dat=%3Ccrossref%3E10_3390_stats2020022%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true