INARMA Modeling of Count Time Series
While most of the literature about INARMA models (integer-valued autoregressive moving-average) concentrates on the purely autoregressive INAR models, we consider INARMA models that also include a moving-average part. We study moment properties and show how to efficiently implement maximum likelihoo...
Gespeichert in:
Veröffentlicht in: | Stats (Basel, Switzerland) Switzerland), 2019-06, Vol.2 (2), p.284-320 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 320 |
---|---|
container_issue | 2 |
container_start_page | 284 |
container_title | Stats (Basel, Switzerland) |
container_volume | 2 |
creator | Weiß, Christian H. Feld, Martin H.-J. M. Mamode Khan, Naushad Sunecher, Yuvraj |
description | While most of the literature about INARMA models (integer-valued autoregressive moving-average) concentrates on the purely autoregressive INAR models, we consider INARMA models that also include a moving-average part. We study moment properties and show how to efficiently implement maximum likelihood estimation. We analyze the estimation performance and consider the topic of model selection. We also analyze the consequences of choosing an inadequate model for the given count process. Two real-data examples are presented for illustration. |
doi_str_mv | 10.3390/stats2020022 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_3390_stats2020022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3390_stats2020022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c203t-96eb067cc74a421bad244f4d6d9512e51a2d4bb52d676f18b54aeb6cbc9eeeab3</originalsourceid><addsrcrecordid>eNpNjztLA0EURgdRMMR0_oApLF29c-eVKZfFRyBRSCLYLfO4KytJVmbWwn-vokWq8xWHDw5jlwJupHRwW0Y_FgQEQDxhE9RWVA706-nRPmezUt7hR7HGqbmasKvFU71e1Xw1JNr1hzc-dLwZPg8j3_Z74hvKPZULdtb5XaHZP6fs5f5u2zxWy-eHRVMvq4ggx8oZCmBsjFZ5hSL4hEp1KpnktEDSwmNSIWhMxppOzINWnoKJIToi8kFO2fXfb8xDKZm69iP3e5-_WgHtb2R7HCm_AW9ORHo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>INARMA Modeling of Count Time Series</title><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Weiß, Christian H. ; Feld, Martin H.-J. M. ; Mamode Khan, Naushad ; Sunecher, Yuvraj</creator><creatorcontrib>Weiß, Christian H. ; Feld, Martin H.-J. M. ; Mamode Khan, Naushad ; Sunecher, Yuvraj</creatorcontrib><description>While most of the literature about INARMA models (integer-valued autoregressive moving-average) concentrates on the purely autoregressive INAR models, we consider INARMA models that also include a moving-average part. We study moment properties and show how to efficiently implement maximum likelihood estimation. We analyze the estimation performance and consider the topic of model selection. We also analyze the consequences of choosing an inadequate model for the given count process. Two real-data examples are presented for illustration.</description><identifier>ISSN: 2571-905X</identifier><identifier>EISSN: 2571-905X</identifier><identifier>DOI: 10.3390/stats2020022</identifier><language>eng</language><ispartof>Stats (Basel, Switzerland), 2019-06, Vol.2 (2), p.284-320</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c203t-96eb067cc74a421bad244f4d6d9512e51a2d4bb52d676f18b54aeb6cbc9eeeab3</citedby><cites>FETCH-LOGICAL-c203t-96eb067cc74a421bad244f4d6d9512e51a2d4bb52d676f18b54aeb6cbc9eeeab3</cites><orcidid>0000-0001-8739-6631</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Weiß, Christian H.</creatorcontrib><creatorcontrib>Feld, Martin H.-J. M.</creatorcontrib><creatorcontrib>Mamode Khan, Naushad</creatorcontrib><creatorcontrib>Sunecher, Yuvraj</creatorcontrib><title>INARMA Modeling of Count Time Series</title><title>Stats (Basel, Switzerland)</title><description>While most of the literature about INARMA models (integer-valued autoregressive moving-average) concentrates on the purely autoregressive INAR models, we consider INARMA models that also include a moving-average part. We study moment properties and show how to efficiently implement maximum likelihood estimation. We analyze the estimation performance and consider the topic of model selection. We also analyze the consequences of choosing an inadequate model for the given count process. Two real-data examples are presented for illustration.</description><issn>2571-905X</issn><issn>2571-905X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNjztLA0EURgdRMMR0_oApLF29c-eVKZfFRyBRSCLYLfO4KytJVmbWwn-vokWq8xWHDw5jlwJupHRwW0Y_FgQEQDxhE9RWVA706-nRPmezUt7hR7HGqbmasKvFU71e1Xw1JNr1hzc-dLwZPg8j3_Z74hvKPZULdtb5XaHZP6fs5f5u2zxWy-eHRVMvq4ggx8oZCmBsjFZ5hSL4hEp1KpnktEDSwmNSIWhMxppOzINWnoKJIToi8kFO2fXfb8xDKZm69iP3e5-_WgHtb2R7HCm_AW9ORHo</recordid><startdate>20190603</startdate><enddate>20190603</enddate><creator>Weiß, Christian H.</creator><creator>Feld, Martin H.-J. M.</creator><creator>Mamode Khan, Naushad</creator><creator>Sunecher, Yuvraj</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8739-6631</orcidid></search><sort><creationdate>20190603</creationdate><title>INARMA Modeling of Count Time Series</title><author>Weiß, Christian H. ; Feld, Martin H.-J. M. ; Mamode Khan, Naushad ; Sunecher, Yuvraj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c203t-96eb067cc74a421bad244f4d6d9512e51a2d4bb52d676f18b54aeb6cbc9eeeab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weiß, Christian H.</creatorcontrib><creatorcontrib>Feld, Martin H.-J. M.</creatorcontrib><creatorcontrib>Mamode Khan, Naushad</creatorcontrib><creatorcontrib>Sunecher, Yuvraj</creatorcontrib><collection>CrossRef</collection><jtitle>Stats (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weiß, Christian H.</au><au>Feld, Martin H.-J. M.</au><au>Mamode Khan, Naushad</au><au>Sunecher, Yuvraj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>INARMA Modeling of Count Time Series</atitle><jtitle>Stats (Basel, Switzerland)</jtitle><date>2019-06-03</date><risdate>2019</risdate><volume>2</volume><issue>2</issue><spage>284</spage><epage>320</epage><pages>284-320</pages><issn>2571-905X</issn><eissn>2571-905X</eissn><abstract>While most of the literature about INARMA models (integer-valued autoregressive moving-average) concentrates on the purely autoregressive INAR models, we consider INARMA models that also include a moving-average part. We study moment properties and show how to efficiently implement maximum likelihood estimation. We analyze the estimation performance and consider the topic of model selection. We also analyze the consequences of choosing an inadequate model for the given count process. Two real-data examples are presented for illustration.</abstract><doi>10.3390/stats2020022</doi><tpages>37</tpages><orcidid>https://orcid.org/0000-0001-8739-6631</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2571-905X |
ispartof | Stats (Basel, Switzerland), 2019-06, Vol.2 (2), p.284-320 |
issn | 2571-905X 2571-905X |
language | eng |
recordid | cdi_crossref_primary_10_3390_stats2020022 |
source | DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
title | INARMA Modeling of Count Time Series |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A08%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=INARMA%20Modeling%20of%20Count%20Time%20Series&rft.jtitle=Stats%20(Basel,%20Switzerland)&rft.au=Wei%C3%9F,%20Christian%20H.&rft.date=2019-06-03&rft.volume=2&rft.issue=2&rft.spage=284&rft.epage=320&rft.pages=284-320&rft.issn=2571-905X&rft.eissn=2571-905X&rft_id=info:doi/10.3390/stats2020022&rft_dat=%3Ccrossref%3E10_3390_stats2020022%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |