INARMA Modeling of Count Time Series

While most of the literature about INARMA models (integer-valued autoregressive moving-average) concentrates on the purely autoregressive INAR models, we consider INARMA models that also include a moving-average part. We study moment properties and show how to efficiently implement maximum likelihoo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stats (Basel, Switzerland) Switzerland), 2019-06, Vol.2 (2), p.284-320
Hauptverfasser: Weiß, Christian H., Feld, Martin H.-J. M., Mamode Khan, Naushad, Sunecher, Yuvraj
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:While most of the literature about INARMA models (integer-valued autoregressive moving-average) concentrates on the purely autoregressive INAR models, we consider INARMA models that also include a moving-average part. We study moment properties and show how to efficiently implement maximum likelihood estimation. We analyze the estimation performance and consider the topic of model selection. We also analyze the consequences of choosing an inadequate model for the given count process. Two real-data examples are presented for illustration.
ISSN:2571-905X
2571-905X
DOI:10.3390/stats2020022