Performance Analysis of Cooperative and Non-Cooperative Relaying over VLC Channels
The line-of-sight (LoS) channel is one of the requirements for efficient data transmission in visible-light communications (VLC), but this cannot always be guaranteed in indoor applications for a variety of reasons, such as moving objects and the layout of rooms. The relay-assisted VLC system is one...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2020-06, Vol.20 (13), p.3660, Article 3660 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The line-of-sight (LoS) channel is one of the requirements for efficient data transmission in visible-light communications (VLC), but this cannot always be guaranteed in indoor applications for a variety of reasons, such as moving objects and the layout of rooms. The relay-assisted VLC system is one of the techniques that can be used to address this issue and ensures seamless connectivity. This paper investigates the performance of half-duplex (HD) conventional DF relay system and cooperative systems (i.e., selective DF (SDF) and incremental DF (IDF)) over VLC channels in terms of outage probability and energy consumption. Analytical expressions for both outage probability and the minimum energy-per-bit performance of the aforementioned relaying systems are derived. Furthermore, Monte Carlo simulations are provided throughout the paper to validate the derived expressions. The results show that exploiting SDF and IDF relaying schemes can achieve approximately 25% and 15% outage probability enhancement compared to single-hop and DF protocols, respectively. The results also demonstrate that the performance of the single-hop VLC system deteriorates when the end-to-end distances become larger. For example, when the vertical distance is 3.5m, the single-hop approach consumes 20%, 40% and 45% more energy in comparison to the DF, SDF, and IDF approaches, respectively. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s20133660 |