Satellite Remote Sensing for the Analysis of the Micia and Germisara Archaeological Sites

The capabilities of satellite remote sensing technologies and their derived data for the analysis of archaeological sites have been demonstrated in a large variety of studies over the last decades. Likewise, the Earth Observation (EO) data contribute to the disaster management process through the pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2020-06, Vol.12 (12), p.2003
Hauptverfasser: Dana Negula, Iulia, Moise, Cristian, Lazăr, Andi Mihai, Rișcuța, Nicolae Cătălin, Cristescu, Cătălin, Dedulescu, Andreea Luminița, Mihalache, Cristina Elena, Badea, Alexandru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The capabilities of satellite remote sensing technologies and their derived data for the analysis of archaeological sites have been demonstrated in a large variety of studies over the last decades. Likewise, the Earth Observation (EO) data contribute to the disaster management process through the provision of updated information for areas under investigation. In addition, long term studies may be performed for the in–depth analysis of the disaster–prone areas using archive satellite imagery and other cartographic materials. Hence, satellite remote sensing represents an essential tool for the study of hazards in cultural heritage sites and landscapes. Depending on the size of the archaeological sites and considering the fact that some parts of the site might be covered, the main concern regards the suitability of satellite data in terms of spatial and spectral resolution. Using a multi–temporal Sentinel–2 dataset between 2016 and 2019, the present study focuses on the hazard risk identification for the Micia and Germisara archaeological sites in Romania as they are endangered by industrialisation and major infrastructure works and soil erosion, respectively. Furthermore, the study includes a performance assessment of remote sensing vegetation indices for the detection of buried structures. The results clearly indicate that Sentinel–2 imagery proved to be fundamental in meeting the objectives of the study, particularly due to the extensive archaeological knowledge that was available for the cultural heritage sites. The main conclusion to be drawn is that satellite–derived products may be enhanced by integrating valuable archaeological context, especially when the resolution of satellite data is not ideally fitting the peculiarities (e.g., in terms of size, underground structures, type of coverage) of the investigated cultural heritage sites.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs12122003